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Abstract

Non-equilibrium phenomena induced by impacts have been extensively studied
in various contexts, such as nuclear reactions, nanotechnology and granular
flows. Recent experimental and numerical studies revealed interesting aspects
of impact processes of a granular flow. An experimental paper on dense granular
jets [Cheng et al., Phys. Rev. Lett. 99, 188001 (2007)] has reported that the
fluid state after the impact is similar to that for Quark Gluon Plasma (QGP)
achieved in heavy ion colliders, where QGP behaves as a fluid with very small
viscosity. Quite recently, a theoretical group at Chicago demonstrated that the
solution of inviscid Euler equation is almost identical to that obtained from their
molecular dynamics simulation for inelastic hard core particles, at least, for two
dimensional frictionless grains. These results are counter intuitive because in a
usual setup the dense granular fluid has a large viscosity.

In this dissertation, we investigate impact processes of granular jets on a
fixed wall, in both two (2D) and three dimensions (3D) numerically, by using
Discrete Element Method, to study the fluid state after the impacts. We found
the following properties of the impact processes of granular jets.

(i) In 3D, the equation of states and the shear viscosity are consistent with
the kinetic theory, while the shear stress is much smaller than normal stresses,
thanks to the small strain rate.

(ii) In 2D, because grains are well packed, the asymptotic divergence of the
pressure or the shear viscosity similar to the jamming transition, appears.

(iii) In 2D, for bidispersed systems, the effective friction constant defined as
the ratio between shear stress and normal stress, monotonically increases from
near zero, as the increment of the strain rate. On the other hand, the friction
constant has two metastable branches for mono-disperse system because of the
coexistence of a crystallized state and a liquid state.

(iv) Both in 2D and 3D, there exist large normal stress differences, which
cannot be observed in the perfect fluid.

These results (i)-(iv) may be in contrast to the experimental suggestion of
the similarity between granular jets and“ perfect fluid.” In particular, our
numerical result (i) provides a theoretical explanation of the similarity between
granular flow and perfect fluid, which has been reported in an experiment and
the 2D study. Through the investigation of the rheological properties, we may
conclude that the similarity between the granular flow and the perfect fluid,
which comes from a small strain rate, is superficial. Our results may shed light
on the internal fluid structure under strong non-equilibrium situations, i.e., the
impact processes of a granular jet.



Chapter 1

Introduction

1.1 Impact Process

Physics of impact processes is one of hot subjects in non-equilibrium physics.
Impact processes play important roles in various fields such as nuclear reactions
[1–8], atomic collisions [9, 10], nano cluster collisions [11–16], hydrodynamics
[17–30] and granular physics [31–40], including industrial applications [41,42].

1.1.1 Impact process in the nuclei-scale

Dense and high energy states of nuclei are revealed through heavy ion colli-
sions such as Au-Au collisions [1] and Pb-Pb collisions [2]. One of the primary
purposes of heavy ion physics at high energies is to explore the properties of
strongly interacting matter i.e. the Quark Gluon Plasma (QGP) [3–5]. QGP
behaves as a fluid with very small shear viscosity. Kovtun et al. characterize
how close a given fluid is to being perfect by using the ratio of shear viscosity
to volume density of entropy, which is derived via string theory [6]. The nu-
merical study for the nuclei collisions are performed by using hydrodynamical
model [3,4] and the antisymmetrized molecular dynamics (AMD) method [7,8]

1.1.2 Impact process in the nano-scale

The dynamics of nano clusters have been extensively investigated from both
scientific interest [11–16] and technological interest [41,42]. For example, impact
processes of grains with adhesions [12], polymeric nano droplet [13]. Several
states after the impact of Lenard-Jones clusters, such as sticking, scattering
and fragmentation can be found via Molecular Dynamics (MD) simulations [11].
Super elastic collisions, where restitution coefficients exceeds unity, are also
recent hot topics for the non-equilibrium phenomena induced by impacts [14–
16]. Industrial applications would be the blast cleaning, which is the cleaning
technique for the surface of metal through impinging jets of nano-particles [41],
or the ink-jet printing [42].
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1.1.3 Impact process in the macroscopic scale

Impact process of water columns

Impact of water columns has a long history [19–30].The studies on water bells
start experimentally in 1833 with the work of Savart [19–22]. Savart investigated
impact processes of liquid columns on a small target [19] and a large target [20,
21] and a head-on collision of liquid columns [22]. The liquid sheets induced by
the liquid jet impacts split into droplets, through the instability from the surface
tension. In the twentieth century, the interest in water bells and liquid sheets
has mainly moved from physics to engineering for the purpose of controlling
the liquid atomization [23, 24]. The investigation for the industrial application
triggered the study for the stability of the bells [25–27] and the influence of the
rotation [28]. The water bells formed on the underside of a horizontal plate
are investigated experimentally [29] and theoretically [30]. The history and the
current status for the water bells are summarized in Ref. [27].

Impact process of the granular flow

Recent experimental and numerical studies revealed interesting aspects of im-
pact processes of a granular flow [31–40]. At low volume fractions, impact of
a granular flow onto a wall produces a shock, which quantitatively agrees with
the Mach cone produced by supersonic gas flow [32–34]. Crater morphology
is studied via an impact process of a free-falling water drop or grain onto a
granular layer [35,36], while a sinking grain produces a sand jet [37].

Recently, an experimental paper on dense granular jets [31] has reported that
the fluid state after the impact is similar to that for QGP achieved in heavy
ion colliders, where QGP behaves as a fluid with very small viscosity [1, 6].
Quite recently, Ellowitz et al. [38] demonstrated that the solution of inviscid
Euler equation is almost identical to that obtained from their MD simulation
for inelastic hard core particles, at least, for two-dimensional (2D) frictionless
grains. These results are counter intuitive because in a usual setup the dense
granular fluid has a large viscosity [43]. Huang et al. reported that the relevant
role of the contact stress in a 2D granular jet [40] and Guttenberg constructed
the phenomenology for the scattering angle [39], while the rheology during the
impact process is not clear.

1.2 The Aim of This Paper

The aim of this dissertation is to investigate non-equilibrium phenomena in-
duced by jet impacts. The length scale of jet-induced phenomena ranges from
the scale of grains mm ∼ µm to that of nuclei, where various interactions can
be found, such as excluded volume effects (contact forces), long-range repul-
sive or attractive interactions and dissipation. To extract the simple physics
induced by impacts, we adopt contact forces with dissipation as an interaction
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model, which corresponds to that of interaction between dry grains, i.e. Discrete
Element Method (DEM) [45,46].

One of the noteworthy facts would be the jet-induced perfect-fluidity, sug-
gested via experiments. We perform three-dimensional (3D) simulation for gran-
ular jet impacts for both frictional and frictionless grains [47, 48]. Small shear
stress observed in the experiment [31] is reproduced through our simulation.
However, the fluid state after the impact is far from a perfect fluid, and thus,
similarity between granular jets and quark gluon plasma is superficial, because
the observed viscosity is finite and its value is consistent with the prediction of
the kinetic theory.

We perform 2D simulations for the granular jet [49]. Because grains are
easily packed through the impact in 2D, the system would be near the jammed
state. This 2D study is complementary to the previous 2D DEM study [40],
and hard core simulations supplemented by the simulation of a perfect fluid
model [38]. Indeed, although Huang et al. reported that the relevant role of the
contact stress in a 2D granular jet, they were not interested in critical behavior
of jammed grains induced by the jet. Guttenberg suggested that the friction
constant does not play significant role, at least, in the scattering angle [39] by
using an approximate hard-sphere method [44], while the effects on the jammed
state induced by jets are unknown.

This paper is organized as follows: After a short review of the kinetic theory
for granular flow and studies of the dense granular flow in Chapter 2, we intro-
duce the outline of DEM briefly in Chapter 3. We focus on the scattered states
of the granular jets in 3D in Chapter 4. Rheology of the granular jets in 3D and
2D are discussed in Chapter 5 and 6, respectively. We summarize the results
and future works in Chapter 7. We show the detailed derivations of hydrody-
namical equations in Appendix A and the detailed implementation of DEM in
Appendix B. In Appendix C, we derive the local description of stress tensor.
We analyze the shear viscosity on a shear stress vs strain rate plane in 3D in
Appendix D, and results for artificial burst-like flows in 2D are summarized in
Appendix E.
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Chapter 2

Many-body System of
Granular Matter

In this chapter we briefly review investigations of the granular hydrodynam-
ics and the rheology of dense granular flows to apply them to granular jet
impacts. Firstly we review the history of kinetic theory such as Boltzmann
equation, Enskog equation, Chapman-Enskog expansion, BBGKY hierarchy,
Choh-Uhlenbeck equation and Revised Enskog equation. Next, we explain the
kinetic theory for granular flows. The treatment of rotational degree of freedom
of grains is also discussed. Lastly, we review the rheology of dense granular flows,
including Bagnold scaling, granular friction and the scaling theory of jamming
transitions, where the kinetic theory breaks down. If you are familiar with these
subjects, you can skip reading this chapter.

2.1 Granular Hydrodynamics

To understand many-body systems of grains, hydrodynamical pictures are nec-
essary, where density n, velocity field v̄ and granular temperature Tg, which
denotes the fluctuation of the particle-velocities, are conventionally chosen as
hydrodynamical variables. The kinetic theory was applied to a granular flow
for the first time by Jenkins and Savage [50]. Hydrodynamics for granular flow,
where transport coefficients are calculated explicitly through the kinetic theory,
is called granular hydrodynamics [50–76]. There are many studies for granular
hydrodynamics including smooth grains [50–53], micro-polar fluid model [54,55],
rough grains [56–62], slightly frictional grains [63–68] or grains with disper-
sity [69–71], which are valid up to moderate dense flow.
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2.1.1 Review for the Kinetic Theory:
From Boltzmann equation to Revised Enskog equation

Here, we review the history of the kinetic theory. The kinetic theory is the
theory which originates from Boltzmann. There are many textbooks for the
kinetic theory [77–84]. The history of the kinetic theory is also summarized and
the original paper for Chapman-Enskog methods or Enskog theory is re-printed
in Ref. [84].

Boltzmann equation

Boltzmann equation, which is a time evolution equation for the one-body distri-
bution function, is introduced to understand the second law of thermodynamics
from mechanical viewpoint in 1872. The velocity before the collision vl and
after the collision v′

l of l th grains (l = 1, 2) with restitution coefficient e and
the same mass are related as

v′
1 = v1 −

1 + e

2
(k · v12)k (2.1)

v′
2 = v2 +

1 + e

2
(k · v12)k, (2.2)

with the unit vector k ≡ (r2−r1)/|r2−r1| and relative velocities v12 ≡ v1−v2.
We introduce the pre-collision velocities v′′

l , which lead vl after the collision:

v′′
1 = v1 −

1 + e

2e
(k · v12)k (2.3)

v′′
2 = v2 +

1 + e

2e
(k · v12)k. (2.4)

Equations. (2.1) and (2.2) are called direct collisions and Eqs. (2.3) and (2.4) are
called inverse collisions. Boltzmann equation for elastic gas, which corresponds
to the case e = 1, without external force is described as

∂f1
∂t

+ v1 · ∇1f1 =
∫
d3v2d

2kS(k · v12)(f ′′1 f
′′
2 − f1f2), (2.5)

with the scattering cross section S(k · v12) ≡ σ2|k · v12|Θ(k · v12), where we
have introduced Heaviside function Θ(x) with Θ(x) = 1(x ≥ 0) and Θ(x) =
0(x < 0) and particle diameter σ, with abbreviation fi ≡ f(ri,vi)(i = 1, 2) and
f ′′i ≡ f(ri,v′′

i ) at the position of i th particle ri. The right hand side on Eq.
(2.5) is called the collision integral

Iel(f, f) ≡
∫
d3v2d

2kS(k · v12)(f ′′1 f
′′
2 − f1f2). (2.6)

The first term of the collision integral denotes the increase of the probability
f1 after the collision and the second term denotes the decrease of f1. Boltz-
mann equation has been used not only for classical gases but for electron gases
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or plasma [85, 86] and verified via Direct Simulation of Monte Carlo (DSMC)
method [87–90].

Hydrodynamical equations, which will be discussed later, can be derived
from Boltzmann equation by integrating over

∫
d3v1 after multiplying ψ1 ≡

1, v1α,v2
1, which are zero eigenvector of the collision integral:∫
d3v1ψ1Iel(f, f) =

∫
d3v1d

3v2ψ1

∫
d2kS(g12)(f ′′1 f

′′
2 − f1f2) (2.7)

=
1
4

∫
d3v1d

3v2{ψ1 + ψ2 − ψ′
1 − ψ′

2)} (2.8)

×
∫
d2kS(g12)(f ′′1 f

′′
2 − f1f2)

= 0, (2.9)

with g12 ≡ k ·v12. The time reversal symmetry during local collisions is used to
derive the second equation, and the last equation results from the conservation
of mass, momentum and kinetic energy. Because the derived hydrodynamical
equations contain unknown function, such as the stress tensor or the heat flux,
we need the explicit expressions for f1. The systematic perturbative method to
obtain f1 is known as Chapman-Enskog expansion.

Chapman-Enskog expansion

The explicit calculation of the shear viscosity and the heat conductivity is per-
formed in 1917 by Chapman and Enskog, where Boltzmann equation (2.5) is
perturbatively solved by assuming that the distribution function f1 depends on
space ant time variables through hydrodynamic variables a(r, t) = {n(r, t), v̄(r, t), T (r, t)}
[91], i.e. the local density n(r, t), the local velocity field v̄(r, t) and the local tem-
perature T (r, t): f1(v1, r, t) → f1(v1|n, v̄, T ). Namely, ∂tf1 → (∂f1/∂a)∂ta.
Because there is a large scale separation between kinetic and hydrodynami-
cal regime, the small expansion parameter ε ∼ l0∂α, which denotes the non-
uniformity parameter, is introduced as a systematic expansion parameter with
a mean free path l0. The distribution function is expanded as f1 = fM +
εf (1) + O(ε2), with local Maxwellian fM and

∫
d3v1fM = n. Here, O(ε0) and

O(ε1) denote Euler and Navier-Stokes order solutions, respectively. In summary,
Chapman-Enskog method is the method to solve following equations:

∂f

∂t
+ εv1 · ∇1f = Iel(f, f), (2.10)

f = fM + εf (1) +O(ε2), (2.11)
f(v1, r, t) = f(v1|n(r, t), v̄(r, t), T (r, t)). (2.12)

BBGKY hierarchy

Let us show the relation betweenn Boltzmann equation Eq. (2.5) and the mi-
croscopic equations of motion (EoM) for N particles, following Ref. [83]. The
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dynamics of the system can be described as the trajectory of a phase point in
the 6N dimensional phase spase (rN ,pN ) with momenta pN = p1, · · ·pN and
rN = r1, · · · , rN . Let H be the Hamiltonian of the system, which we write in
general form as

H(rN ,pN ) = KN (pN ) + VN (rN ), (2.13)

with the total kinetic energy KN ≡
∑

i p
2
i /2m and potential energy VN (rN ),

where equations of motion are

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri
(2.14)

(i = 1, · · ·N). We introduce a phase-space probability density f [N ](rN ,pN , t).∫
drNdpNf [N ](rN ,pN , t) = 1. (2.15)

The time evolution of the probability density in phase space is governed by
the Liouville equation, which is a 6N dimensional analogue of the equation of
continuity of an incompressible fluid:

df [N ]

dt
=
∂f [N ]

∂t
+
∑

i

(
∂

∂ri
· f [N ]ṙi +

∂

∂pi
· f [N ]ṗi

)
= 0. (2.16)

We rewrite Eq. (2.16) for convenience by introducing the pair force fij between
i th and j th particles:(

∂

∂t
+
∑

i

·pi

m
· ∂

∂ri

)
f [N ] = −

∑
ij

fij ·
∂f [N ]

∂pi
, (2.17)

with fii = 0. Because we are usually interested in the behavior of a subset of s
particles, we introduce a reduced phase-space distribution function f (s):

f (s)(rs,ps, t) ≡ N !
(N − s)!

∫
dr(N−s)dp(N−s)f [N ](rN ,pN , t), (2.18)

with rs ≡ r1, · · · rs, ps ≡ p1, · · ·ps, r(N−s) ≡ rs+1, · · · rN and p(N−s) ≡
ps+1, · · ·pN . The time evolution for f (s) can be calculated by integrating Eq.
(2.17) over dr(N−s)dp(N−s).(

∂

∂t
+

s∑
i

·pi

m
· ∂

∂ri

)
f (s) = −

s∑
i,j=1

fij ·
∂f (s)

∂pi
− N !

(N − s)!

×
s∑

i=1

N∑
j=s+1

∫
dr(N−s)dp(N−s)fij ·

∂f [N ]

∂pi
.

(2.19)
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Because f [N ] is symmetric with respect to interchange of particle labels and the
sum of terms for j = s + 1 to N in Eq. (2.19) is replaced by N − s times the
value of any one term. Thus, Eq. (2.19) can be simplified as ∂

∂t
+

s∑
i

pi

m
· ∂

∂ri
+

s∑
i,j=1

fij ·
∂

∂pi

 f (s) = −
s∑

i=1

∫
drs+1dps+1fi,s+1 ·

∂f (s+1)

∂pi
.

(2.20)

The exact equation (2.20), which relates f (s) and f (s+1), is known as the
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy. The important
case is s = 1:(

∂

∂t
+

p1

m
· ∂

∂r1

)
f = −

∫
dr2dp2f1,2 ·

∂f (2)

∂p1
≡
(
∂f

∂t

)
coll

, (2.21)

where we rewrite f (1) → f . Although Eq. (2.21) is exact, we need all f (n)(n > 1)
to obtain f (1). Thus, some approximate closure relation is necessary. If we
choose (

∂f

∂t

)
coll

= Iel(f, f), (2.22)

Boltzmann equation (2.5) is reproduced. Therefore, the assumption of Boltz-
mann equation is that the two-body distribution function can be approximated
as the product of the one-body distribution function. Although the transport co-
efficients for rarefied can be calculated via Boltzmann equation using Chapman-
Enskog expansion, Boltzmann equation is only suitable for dilute gases. Thus,
Boltzmann equation has been extended to treat moderate dense gases.

Extension of Boltzmann equation

Indeed, there is a long history to extend Boltzmann equation for the dense
fluid [92–102]. In 1922 [92], Enskog proposed one of the generalization of the
Boltzmann equation for hard sphere fluid, which is now called “Standard Enskog
Theory (SET),” where f (2) is replaced as

f (2) → g(|r12| = σ)f(r1,v1, t)f(r1 − kσ,v2, t), (2.23)

i.e. the product of the distribution function for the two colliding spheres and
g(σ) denotes static two-body correlations or the radial distribution function for
a hard sphere fluids. This replacement represents the collisional transfer, i.e.
instantaneous transfer of momentum and energy over the hard sphere through
binary collisions. For the SET, the static correlation g is the function of the
number density as in fluid in uniform equilibrium with n evaluated at the contact
point (r1 + r2)/2. SET, which is a phenomenology, has been criticized for the
absence of the Onsager reciprocity relations in the case of binary mixture of
hard-sphere fluids [99].
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After the formulation of the BBGKY hierarchy, in 1958, Choh and Uhlenbeck
[93] extended the Boltzmann equations to include triple collision term K(f, f, f)

∂f1
∂t

+ v1 · ∇f1 = Iel(f, f) +K(f, f, f) + · · · , (2.24)

and performed the density expansion, where the density dependence of the trans-
port coefficients are calculated with the density of the system N/V as an expan-
sion parameter. Here, the correction in Eq. (2.23) is included in Iel(f, f). Choh
and Uhlenbeck calculated the first order correction of the transport coefficient
in three dimensions and Green and Cohen derived the formal structure of l-tuple
collision terms (l = 2, 3, 4, · · · ). McLennan showed that the first correction term
corresponds to the results from Green-Kubo formula [94]. However, Dorfman
and Cohen , Weinstock, as well as Goldman and Frieman show that the den-
sity expansion contains the logarithmic divergent in the second order correction
term in 3D and the first order correction in 2D. Therefore, the convergence of
the density expansion might be questionable. Kawasaki and Oppenheim were
the first to re-sum the divergent term i.e. ring diagrams [95]. The details of the
work by Choh Uhlenbeck are summarized by Ernst [102].

Revised Enskog Theory

Recent accepted phenomenological theory for the kinetic theory is called “Re-
vised Enskog Theory(RET), ” which is constructed in 1972 by van Beijeren and
Ernst. [96–98,100]. RET equation is described as

(
∂

∂t
+ v1 · ∇1)f(r1,v1, t) = Jel

E [r1,v1|f(t)] (2.25)

, with collision operator

Jel
E [r1,v1|f(t)] ≡

∫
d3v2d

2kS(k · v12){f (2)(r1,v′′
1 ; r1 + σk,v′′

2 ; t)

−f (2)(r1,v1; r1 − σk,v2; t)}, (2.26)

where the closure for the two body distribution f (2)

f (2)(r1,v1; r2v2; t) = χ(r1, r2|n(t))f(r1,v1, t)f(r2,v2, t), (2.27)

is adopted. The difference of RET from SET is χ, which is the functional of n
as in a fluid in non-uniform under the local equilibrium [103]. RET dose not
contradict to the Onsager reciprocal relation [98]. Haro and Garzó showed that
the difference between SET and RET emerges in the case of a binary mixture
of hard-sphere fluid at Navier-Stokes order [99], or a monatomic fluid at the
Burnett order [101].

2.1.2 Kinetic Theory for Granular Flow

Boltzmann equation for granular flow

Let us derive Boltzmann equation for granular gases intuitively, following Ref.
[73]. Boltzmann equation consists of the collision integral I(f, f), which denotes
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the increase or decrease of f1d3r1 after the collision per unit time. The number
of direct collisions ν− and that of inverse collisions ν+ that occur during ∆t and
whose geometry is specified by d2k are described as

ν− = f1f2d
3v1d

3v2S(k · v12)d2k∆td3r1 (2.28)
ν+ = f ′′1 f

′′
2 d

3v′′1d
3v′′2S(k · v′′

12)d
2k∆td3r1 (2.29)

= Λf ′′1 f
′′
2 d

3v1d
3v2S(k · v12)d2k∆td3r1 (2.30)

with

Λ ≡ 1
e

∂(v′′
1 ,v

′′
2 )

∂(v1,v2)
, (2.31)

where the Jacobian yields
∂(v′′

1 ,v
′′
2 )

∂(v1,v2)
=

1
e
, (2.32)

for e = const. case. Thus, the Boltzmann equation for granular gas follows from
the conservation of probability:

Df1
Dt

=
∂f1
∂t

+ v1 · ∇1f1 =
∫
d3v2d

2kS(k · v12)
(

1
e2
f ′′1 f

′′
2 − f1f2

)
. (2.33)

The difference from elastic gas is that the existence of the homogeneous cooling
state (HCS) due to the inelastic collisions. Because the kinetic energy dissipates
through inelastic collisions, Tg, which is called the granular temperature, goes to
zero as time passes. Although the exact solution is not known, the homogeneous
solution for Eq. (2.33) is conventionally analyzed by using Sonine polynomial
expansion:

f(v, t) = fM [1 +
∞∑

p=1

apSp(c2)], (2.34)

with c ≡ v1/
√

2Tg(t)/m and Sonine polynomials Sp(x)(p = 0, 1, 2, · · · ), which
satisfy the orthogonality conditions∫

dc
e−c2

π−3/2
Sp(c2)Sp′(c2) = 2δpp′(p+

1
2
)!. (2.35)

The first few Sonine polynomials in 3D read

S0(x) = 1, S1(x) = −x+
3
2
, S2(x) =

x2

2
− 5x

2
+

15
8
, (2.36)

where the corresponding coefficients for f are known to be a1 = 0 and

a2 =
16(1 − e)(1 − 2e2)

81 − 17e+ 30e2(1 − e)
, (2.37)

which is derived by van Noije and Ernst [74] based on an earlier calculation
by Goldstein and Shapiro [56]. The validity of the Sonine polynomial approx-
imation is verified via DSMC simulation [75]. We note that one-dimensional
granular gas violates equipartition of energy [76].

10



RET for granular flow

For the analysis in this paper, we adopt RET for the granular flow in 3D to
treat moderate dense granular flow [52]

(
∂

∂t
+ v1 · ∇1)f(r1,v1, t) = JE [r1,v1|f(t)], (2.38)

where collision operator for granular flow

JE [r1,v1|f(t)] ≡
∫
d3v2d

2kS(k · v12){Λf (2)(r1,v′′
1 ; r1 + σk,v′′

2 ; t)

−f (2)(r1,v1; r1 − σk,v2; t)} (2.39)

is introduced. Here, two-body distribution function is approximated as

f (2)(r1,v1; r2v2; t) = χ(r1, r2|n(t))f(r1,v1, t)f(r2,v2, t), (2.40)

with the equilibrium pair-correlation function χ as a functional of density n and
the Jacobian for constant restitution coefficient case Λ = 1/e2,

From RET equation (2.38), the continuity equation for physical quantity
ψ = ψ(v1) can be calculated through integration

∫
d3v1 after multiplying ψ on

Eq. (2.38):
∂

∂t
〈ψ〉 = − ∂

∂xα
Jα(ψ) + I(ψ), (2.41)

where 〈· · · 〉 ≡
∫
d3v1f(x1,v1, t) · · · and Jα = Jc

α + Jk
α with

Jk
α ≡ 〈v1αψ〉 (2.42)

Jc
α ≡ σ

4

∫
d3v1d

3v2d
2k

∫ 1

0

dλS(v12 · k)kα (2.43)

∆′ψf (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t),

I(ψ) ≡ 1
2

∫
d3v1d

3v2d
2kS(v12 · k)∆ψf (2)(r1 + σk,v1; r1v2; t), (2.44)

with ∆′ψ ≡ (ψ′
1 − ψ1) − (ψ′

2 − ψ2) and ∆ψ ≡ (ψ′
1 − ψ1) + (ψ′

2 − ψ2). Hydro-
dynamical equations are derived by integrating over

∫
d3v1 after multiplying

1, v1α,v2
1/2:

(∂t + v̄β∂β)n = −n∂β v̄β , (2.45)

(∂t + v̄β∂β)v̄α = − 1
mn

∂βσαβ , (2.46)

(∂t + v̄β∂β)Tg = − 2
3n

{∂βqβ + (∂β v̄α)σαβ} − ζTg, (2.47)

with density n ≡
∫
d3v1f(x1,v1, t), velocity filed v̄α ≡

∫
d3v1v1f(x1,v1, t)/n,

granular temperature Tg ≡
∫
d3v1mu2

1f(x1,v1, t)/3n and u1α ≡ v1α− v̄α. Here,
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the stress tensor σαβ , the heat flux qα and the cooling rate ζ are introduced:

σαβ = σk
αβ + σc

αβ , (2.48)

σk
αβ ≡ m〈u1αũ1β〉, (2.49)

σc
αβ ≡ σ3m(1 + e)

4

∫
dv3

1dv
3
2

∫
d2kΘ(g12)g2

12

kαkβf
(2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t), (2.50)

qα = qk
α + qc

α, (2.51)
qk
α ≡ m〈u1αu2

1〉/2, (2.52)

qc
α ≡ σ3m

4

∫
d3v1d

3v2d
2kΘ(g12)2(1 + e)g2

12

Ṽ12βkβkαf
(2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t), (2.53)

ζ ≡ −I(mv2)
3nTg

, (2.54)

with g12 ≡ v12 · k, Ṽ12α ≡ V12α − v̄α and V12 ≡ (v1 + v2)/2. The detail
derivations for Eqs. (2.41) and (2.45)-(2.47) are shown in Appendix A.

Treatment of the Rotational Degrees of Freedom

To solve hydrodynamical equations for frictional grains is laborious work. In-
cluding the collision rule of frictional grains, hydrodynamical equations can
be derived from Enskog equations. However, in addition to equations for the
translational degree of freedoms (n, v̄, Tg), those for the angular velocity fields
ω̄ ≡

∑
i ωi and the rotational temperature Trot ≡

∑
i I0(ωi − ω̄)2/2 with mo-

ment of inertia of grains I0 are necessary, which are quite complicated [54–62].
This difficulty can be avoided in the case of the slightly frictional grains,

i.e. small µp case, where the effect of the tangential contact in collisions can be
absorbed in the renormalized restitution coefficient [63,64]. For the slightly fric-
tional spheres, Jenkins and Zhang [63] suggested that hydrodynamical equations
for frictional grains are reduced to those for translational degree of freedoms by
introducing an effective restitution coefficient ē

ē = e− π

2
µp +

9
2
µ2

p +O(µ3
p), (2.55)

as an expansion about µp, if the friction constant µp is small. The validity
of three dimensional theory [63] has been tested by Xu et al [65] and Jenkins
and Zhang [63]. The latter is consistent with Lun and Bent [66] in part. The
validity of the case for slightly frictional disks [64] has been verified by Saitoh
and Hayakawa [67, 68]. Although the correlation between velocity and angular
velocity of grains has been argued at the level of velocity distribution functions
(VDFs) [59,62], the transport coefficients for large µp case have not been derived,
to our knowledge.
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2.2 Rheology of the Dense Granular Flow

Rheology for dense granular flow, where the grains are almost in contact, has
been discussed by many researchers [104–149]. Because the kinetic theory might
not be valid above the volume fraction φ ∼ 0.50, which is known to be Alder
transition point [150–156], the first principle studies for the dense granular flow
are limited [104–109] and there are many phenomenologies, such as Bagnold
scaling [110–125], granular friction [126–135] and the scaling theory of jamming
transitions [136–149].

2.2.1 Bagnold Scaling

A typical experiment for dense granular flow would be the flow on a inclined
plane [110–112]. Bagnold proposed a constitutive equation that the shear stress
is proportional to the square of the shear rate [110], so called Bagnold scaling,
which is verified experimentally [111] and numerically [112].

The validity of the Bagnold scaling has been investigated under several con-
ditions such as the flow down on a inclined plane [113–117], shear flow un-
der a constant pressure [118, 126, 131] and the Lees-Edwards boundary condi-
tions [114, 119–122]. Under the inclined flow condition, Mitarai and Nakanishi
suggested that the Bagnold scaling is reproduced from the kinetic theory [113]
and, Lee and Huang recently proposed kinetic-theory-based phenomenologi-
cal model to reproduce the Bagnold scaling [117]. Under the Lees-Edwards
boundary conditions, which is the periodic boundary conditions for the shear
flow [123], the stability of the uniform shear flow using DEM [67,68], hydrody-
namical equations [67, 68, 119–122] or time dependent Ginzburg-Landau equa-
tions [124, 125], where the Bagnold scaling is no longer valid, because of the
inhomogeneous spatial sstructure.

2.2.2 Granular Friction

Physics of dry friction is one of the oldest problems, which has been investigated
by da Vinci, Amonton and Coulomb. In particular, the dynamics of granular
flow, which is ubiquitous in the earth science and the engineering, is governed
by a law that describes the behavior of effective friction constant µ∗, which
is defined as the ratio of the shear stress to the normal stress. Examples are
avalanches or land- slides. The frictional properties of granular flow, so-called
granular friction, has been extensively studied experimentally, numerically and
theoretically. The present status of statistical physics of fracture, friction, and
earthquakes is summarized in Ref. [135].

The noteworthy experimental research is a paper by the French research
collective GDR MiDi - the Groupement de Recherche sur les Milieux Divisés-
, comparing flows in several experimental setup, such as plane shear, annular
shear, vertical-chute flows, inclined plane, heap flow and rotating drum, to spec-
ify the common frictional properties of granular flow [126]. GDR MiDi found
that the behavior of the µ∗ in several setups can be described as the function of
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the inertial number I, which is the ratio of inertial forces of grains to external
forces, i.e. shear rate γ̇:

ID ≡ γ̇√
PσD−1/m

, (2.56)

with dimensions D. Since the appearance of the paper by GDR MiDi, the
research using ID has been popular [128–134].

There are mainly two constitutive equations for µ∗. Jop and co-workers
presented a simple friction law that describes flow on inclined planes, which is
investigated through massive simulations and experiments [127–130]:

µ∗ = µs +
µmax − µs

1 + I0/ID
, (2.57)

with constants µs, µmax and I0. Eq. 2.57 describes the static behavior ID → 0
of dense granular flow µ∗ = µs and as Id becomes larger, µ∗ saturate to the
maximum value µmax, monotonically.

Some researchers proposed a different constitutive equation

µ∗ = µs + bIβ
D, (2.58)

with constants b and β, which also reproduces numerical simulations [131, 133,
134].

2.2.3 Jamming Transition

A granular system has rigidity above a critical value of density φJ and does
not have any rigidity below φJ . This sudden change in rigidity is known as
the jamming transition [136–149]. The jamming is not only investigated in the
system of grains, but also that of colloidal suspensions [157] and foams [158] .
Here, φJ decreases as the friction constant µp of grains increases. Moreover, it
seems that there are two fictitious jamming points except for the true jamming
point for finite µp [137]. Critical exponents of the divergence of pressure and
the shear viscosity near the transition are extensively discussed [137–149] and
the current status are summarized in Ref. [149].

The first principle study for the jamming transition is performed through the
theory of “granular-liquid,” where long-time, long-range correlations are signif-
icant, as well as in molecular liquids [104–109]. Mode Coupling Theory (MCT)
has been applied for the glassy behavior of the molecular liquids. Although
MCT is still not completely established as a theory of glasses, MCT seems to
capture partial aspects of the glass transition and its problem is not serious at
least for sheared systems. The conventional approach of projection operators
and the Mori-type equations [159, 160] are applied for the dense granular flow
under the shear [109].
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Chapter 3

Discrete Element Method

In this chapter, we explain the simulation model we used. We adopt the Discrete
Element Method (DEM) for grains with identical mass m proposed by Cundall
and Strack [45]. In this method, a grain is assumed to be a disk or a sphere and
the interaction is repulsive (elastic) force and dissipative (viscous) force.

When the sphere i at the position ri and the sphere j at rj are in contact
Ri + Rj > rij , the normal force Fn

ij and tangential forces F t
ij and F s

ij are
described as

F ij
n = −knu

ij
n − ηnu̇

ij
n (3.1)

F ij
t =

{
F̃ ij

t (F̃ ij
t < µp|F ij

n |)
−µ|F ij

n | (µp|F ij
n | ≤ F ij

t )
(3.2)

F ij
s =

{
F̃ ij

s (F̃ ij
s < µp|F ij

n |)
−µ|F ij

n | (µp|F ij
n | ≤ F ij

s )
(3.3)

with F̃ ij
t ≡ −ktu

ij
t − ηtu̇

ij
t and F̃ ij

s ≡ −ktu
ij
s − ηtu̇

ij
s , by using the relative

displacement t(ut, us, un) in normal direction un and tangential directions ut, us,
where the dot denotes the time derivative, and the radii of i th and j th particle
Ri and Rj , respectively. In the case of the collisions of disks, only F ij

n and F ij
t

are adopted. µp is the friction constant. The detailed implementation of DEM
is explained in Appendix B.

Here, we adopt parameters kt = 0.2kn, ηt = 0.5ηn. We write adopted values
of other parameters kn, ηn and µp in each Chapter. We use the maximum
diameter of grains d ≡ maxi{2Ri} as a unit of the length, d/u0 with the incident
velocity of the jet u0 as a unit of the time and m as a unit of the mass. These
parameters are related to the duration time tc and the restitution coefficient e:

tc =
π√

2kn

m − η2
n

(3.4)

e = exp[−tcηn]. (3.5)

We mainly use the value of µp = 0.2 close to the experimental value for nylon
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spheres [165]. The second-order Adams-Bashforth method for the time integra-
tion with the time interval ∆t = 0.02tc is adopted.

The initial granular temperature, which represents the fluctuation of particle
motion, is zero. The wall consists of one-layer of DEM particles with the same
diameter d and the same mass m, which are connected to each other and with
their own initial positions via the spring and the dashpot with spring constant
kw = 10.0mu2

0/d
2 and the dashpot constant ηw = 5.0ηn, respectively. The

interaction between a grain and a wall particle is calculated via DEM, while
that between wall particles is done only via the spring kw and the dashpot ηw.

In 3D, initial configurations are generated as follows: We prepare fcc crystals
and remove particles randomly to reach the desired density. We control the
initial volume fraction φ0/φfcc ≡ φ̃0 before the impact as 0.30 ≤ φ̃0 ≤ 0.90 with
volume fraction for a fcc crystal φfcc ' 0.74 and 20,000 particles are used. We
average numerical data over the time 50.0 ≤ tu0/d ≤ 100.0 after the impact.

In 2D, initial configurations are generated as follows: We prepare a triangular
lattice with distance between grains 1.1d and remove particles randomly to
reach the desired density. We control the initial area fraction φ0/φini ≡ φ̃0

before the impact as 0.30 ≤ φ̃0 ≤ 0.90 with the initial area fraction before
the removal φini = 0.612, 0.780 for the bi-disperse and the mono-disperse case,
respectively, and 8,000 particles are used. We average numerical data over the
time 180.0 ≤ tu0/d < 300.0 after the impact.
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Chapter 4

Scattered States of
Granular Jets

In this chapter, we discuss the scattered states of granular jets. We focus on the
crossover of the scattering angle, depending on the ratio of the target diameter
and the jet diameter, and the effect of the initial anisotropy of the cross section
of the jet. We use the particles with µp = 0.2 and coefficients of the restitution
from 0.75 to 0.99, where the corresponding parameters are summarized in the
Table 4.1.

(a) (b)

Figure 4.1: The side view of snapshot for the three dimensional simulation.
Green colored particles denote grains, and red colored particles are wall parti-
cles. For Dtar/Djet = 0.8, cone-like scattered jet is reproduced (a), where wall
particles are hidden by scattered jet. For Dtar/Djet = 2.5, sheet-like scattered
jet is reproduced (b).
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Table 4.1: Table for kn, ηn and e for tc = 0.10d/u0

e knd
2/mu2

0 ηnd/u0

0.75 4.98 × 102 2.88
0.80 4.96 × 102 2.23
0.90 4.94 × 102 1.05
0.99 4.93 × 102 0.101

4.1 Scattering Angle

Experimentally, it is known that the scattered state exhibits the crossover from
a cone-like pattern and a sheet-like pattern by changing X ≡ Dtar/Djet with the
jet diameterDjet and the target diameterDtar. The crossover can be reproduced
through DEM, where the jet diameter Djet is fixed Djet/d = 4.5 (Fig. 4.1).
Green particles are grains and red ones are wall particles. Figure 4.1 (a) is a
typical con-like pattern with Dtar/Djet = 0.8. Figure 4.1 (b) is an example of
the sheet-like pattern with Dtar/Djet = 2.5 (b). We note that wall particles are
hidden in (a).

4.1.1 Theory for the scattering angle

A phenomenological model for the scattering angle has been proposed by Clanet
[26]. Clanet assumes that the scattered momentum flux jsc is conserved after the
impact. In our case, since grains collide inelastically, the assumption may not
be correct. However, with simple modification, their results can be reproduced.

The momentum flux of the incident jet jin is scattered with scattering angle
ψ0 and width of the flux h(r) at distance r, where cylindrical axis is chosen.
Conservations of the mass and the momentum flux are, respectively, described
as

πDtarh(
Dtar

2
)jsc −

πD2
jet

4
jin = 0 (4.1)

πDtarh(
Dtar

2
)jsc cosψ0 −

πD2
jet

4
jin = −Fwall, (4.2)

with the force from the wall Fwall. From Eqs. (4.1) and (4.2), the equation for
ψ0 is obtained:

4Acs

πD2
jet

= 1 − cosψ0 ' ψ2
0

2
, (4.3)

where total cross section Acs ≡ Fwall/jin is introduced. Let us think of the
asymptotic behavior for cases X � 1 and X � 1. For X � 1, Asc ∝ πD2

jet/4.
With constant C0,

ψ0 ' C0. (4.4)

On the other hand, for X � 1, with Asc ∝ πD2
tar/4,

ψ0 ' C1X, (4.5)
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with constant C1. ψ0 depends linearly on X.

4.1.2 Numerical results for the scattering angle

The scattering angle ψ0 for the frictional case with φ̃0 = 0.90, and Djet/d = 4.5
for several e exhibits a crossover from a cone-like structure to a sheet-like one,
depending on X ≡ Dtar/Djet, which is almost independent of the restitution
coefficient [166](Fig. 4.2). We average the data over ten different initial con-
figurations in the followings. The dotted lines in Fig. 4.2, ψ0 = C0 for X � 1
and ψ0 = C1X + C2 for X � 1, are asymptotic lines, where constant C2 is
introduced for the fitting. The solid line is an interpolation function ψ0 =√
C

′2
0 {1 − exp(−C2

1X
2/C

′2
0 )} + C2, which reproduces the asymptotic behavior

for ψ0 with C
′

0 ≡ C0 − C2. We obtain fitting parameters C0 = 1.68, C1 = 0.563
and C2 = 0.554 by fitting the interpolation function to the numerical data.
Thus, the crossover from the con-like pattern and the sheet-like pattern, which
is reported in Ref. [31], can be reproduced by our model qualitatively.

1

1.2

1.4

1.6

1 2 3 4 5

Figure 4.2: The dependence of ψ0 [rad] on X for the frictional case with φ̃0 =
0.90, e = 0.75 and Djet/d = 4.5. Here, ψ0 does not depend on the restitution
coefficient. The dotted lines are asymptotic ones ψ0 = C0 for X � 1 and
ψ0 = C1X +C2 for X � 1 and the solid line is the interpolation function. The
asymptotic behavior which is observed in experiments [31] is obtained.

4.2 On the effect of initial anisotropy

To estimate the effect of the initial spatial anisotropy, v2, which is the coefficient
of cos 2ϕ with the azimuthal angle ϕ for scattering flux dN/dϕ, is conventionally
used [3]. The scattering flux dN/dϕ is related to the differential scattering cross
section dσ(θ, ϕ)/dΩ with the scattering angle θ and the other coefficients vn
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with n = 0, 1, · · · as

dN

dϕ
≡
∫

dσ

dΩ
d cos θ =

∞∑
n=0

vn cosnϕ. (4.6)

If the fluid behaves as a perfect fluid, v2/ε is expected to be a constant
for ε, where ε is the eccentricity ε = (l2 − 1)/(l2 + 1) with an aspect ratio l
for an initial rectangular cross section of the jet. The aspect ratio is changed
with fixing the area for the cross section to 16d2. Although v2 is enhanced as
ε increases, the observed v2 is not proportional to ε for e = 0.75 (Fig. 4.3).
We also indicate that Ref. [31] only reports one parameter of v2 = 0.16 and
ε = 0.615 and thus, they cannot discuss whether v2 is proportional to ε. It
should be noted, however, that our v2 is much smaller than the experimental
value for the same ε.

0

0.01
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0.03

0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1

Figure 4.3: (Color online) The dependence of v2 on ε for the frictional case with
φ̃0 = 0.90 and e = 0.75, where the initial cross section of the jet is fixed to 16d2.
v2 does not linearly depend on ε. It should be noted that the observed v2 is
much smaller than the value reported in Ref. [31].
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Chapter 5

Rheology of Granular Jets
in Three Dimensions:
Is granular flow really a
“ perfect fluid?”

Granular	Jet

Figure 5.1: Snapshot of a three-dimensional simulation. Sky-blue-colored par-
ticles are grains and red ones are wall particles. Grains consisting of a regular
lattice with missing particles collide on a bumpy wall, where grains are scattered
randomly, and the jet ejected along with the wall.

In this chapter, we investigate the rheology of granular jets in 3D. We use
both frictional µp = 0.2 and frictionless grains with e = 0.75 and kn, ηn for Table
4.1. A typical snapshot of our simulation is shown in Fig. 5.1. We evaluate
physical quantities near the wall at the height z = ∆z ≡ 5.0d from the wall
z = 0. The jet diameter Djet/d = 10.0 and the target diameter Dtar/d = 22.0
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are fixed. We divide the system into cylindrical calculation region in the radial
direction r = 0,∆r, · · · , 5∆r, with ∆r ≡ Rtar/5 and the target radius Rtar,
and estimate physical quantities in the corresponding mesh region with k∆r <
r < (k + 1)∆r (k = 0, 1, · · · , 5), where r is denoted to the distance from the
symmetric axis of the cylindrical coordinate(Fig. 5.2).

Target

.....

Jet

Figure 5.2: A schematic picture of the calculation region. The cylinder with
radius Rtar and height 5d is divided into cylindrical mesh, where physical quan-
tities are estimated.

5.1 Profiles of Stress Tensor

Let us evaluate the stress tensor near the wall as in Appendix C. The microscopic
definition of the stress tensor at r is given by

σαβ(r) =
1
V

∑
i

muiαuiβ +
1
V

∑
i<j

F ij
α r

ij
β , (5.1)

where i and j are indices of particles, α, β = r, θ, z denote cylindrical coordinates
and

∑
denotes the summation over the particles located at r. Here, z axis is

parallel to the incident jet axis, and V is the volume of each mesh at r and
uiα = vi

α− v̄α(r) with the mean velocity v̄α(r) in the mesh at r. To calculate the
stress tensor in cylindrical coordinates, we firstly calculate σα′β′ in Cartesian
coordinate, α′, β′ = x, y, z, whose origin is the same as cylindrical one, and
transform it into that for cylindrical one.

Here we show the profile of the stress tensor for the frictional case (Fig. 5.3
for φ̃0 = 0.90). From Fig. 5.3, it is apparent that off-diagonal components of
the stress tensor σrz and σzr are much smaller than diagonal components, where
the ratio of the off-diagonal to the diagonal element is estimated as |σrz/σzz| '
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Figure 5.3: The profile of the stress tensor σαβ(mu2
0/d

3) as the functions of
distance from the jet axis r with Rtar for frictional grains with φ̃0 = 0.90. The
off-diagonal components of the stress tensor σrz and σzr are much smaller than
diagonal components as |σrz/σzz| ' 1.7 × 10−2 at r/Rtar = 0.1.

1.7 × 10−2 at r/Rtar = 0.1. This result supports that the solution of Euler
equation well reproduce the granular flow after the impact [38]. We also found
that there exists a large normal stress difference, i.e. the difference between
diagonal components of σαβ , which is also observed in our two-dimensional case.
We obtain the ratio |σrz/σzz| ' 3.0 × 10−2 at r/Rtar = 0.1 for the frictionless
case, where off-diagonal components are much smaller than diagonal ones as in
the case of the frictional case.

5.2 Velocity profile

The profile of v̄r and
√
Tg/m for the frictional case is shown in Fig. 5.4, with

the granular temperature Tg(r) ≡
∑

iαmu
2
iα(r)/3N . Ellowitz et al. suggests

that the dead zone, where the motion of grains is frozen, exist near the target in
2D [38,39]. However, as is shown in Fig. 5.4, although the velocity of grains at
the center is small, the fluctuation of the particle velocity

√
Tg/m is the largest

at the center. Thus, the motion of particles near the target in 3D is not frozen.
Namely, there is no dead zone in 3D granular jets.

5.3 Comparison with the Kinetic Theory

5.3.1 Pressure

Let us look at the result of the pressure (Fig. 5.5). It is known that the granular
sheared flow such as a chute flow and a plane shear flow can be approximately
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Figure 5.4: The profile of the radial component of the velocity field v̄r and√
Tg/m.

described by granular hydrodynamics with transport coefficient derived from
kinetic theory, i.e. the Enskog equation [51–53, 56, 63, 64, 67]. We compare our
simulation with the transport coefficients derived by Garzó and Dufty [52] with
the pressure P ≡

∑
α σαα/3, the density n, the volume fraction φ, and the

granular temperature Tg(r). The pressure is conventionally given by

P

nTg
= 1 + 2φ(1 + e)χ, (5.2)

χ =

{
1−φ/2
(1−φ)3 (0 < φ < φf )
(1−φf /2)(φc−φf )
(1−φf )3(φc−φ) (φf < φ < φc),

(5.3)

where φf = 0.49 and φc = 0.64 [103]. For the frictional case µp = 0.2, we use
the renormalization of e in Eq. (2.55). According to this simplification we use
the effective restitution coefficient ē = 0.616 for e = 0.75 and µp = 0.2, for
frictional case in the following analysis.

Let us compare the theoretical curve with numerical results for several φ̃0

(Fig. 5.5). The black solid line in Fig. 5.5 and that in the inset denote the
theoretical curves for the frictionless case and the frictional case, respectively.
Surprisingly, the expression for the pressure in Eq. (5.2) well reproduces the nu-
merical result for φ < 0.5 inspite of the existence of the normal stress difference
i.e. σzz > σθθ ' σrr, while Eq.(5.2) for 0.5 < φ < 0.6 may have signifi-
cant deviation from the theoretical line. The deviation, which may result from
the singularity near the symmetrical axis r ' 0 of the cylindrical coordinate,
emerges only at r/Rtar = 0.1.

5.3.2 Anisotropic Temperature

Although there exists large normal stress differences, our numerical results can
be reproduced from the empirical relation (5.2), if we introduce an anisotropic
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Figure 5.5: The comparison between the theoretical pressure in Eq. (5.2) and
the observed pressure for several φ̃0, where the vertical axis is P divided by
the density n and the granular temperature Tg for the frictionless case. The
inset denotes comparison among those for the frictional case. The black solid
lines in these figures denote Eq. (5.2) for the frictionless and the frictional case,
respectively.

temperature. Indeed, equations of state for each coordinate satisfies, Pα =
nTα{1 + 2φ(1 + e)χ} for α = r, θ, z and Pr = σrr, Pθ = σθθ and Pz = σzz. By
summing up Pα = nTα{1 + 2φ(1 + e)χ} over α, we can reproduce Eq. (5.2).
From Fig. 5.6, we verify that Pz/nTz and Pr/nTr are on the theoretical curve
for isotropic systems, but Pθ/nTθ has a systematically larger value from the
isotropic one. Although our suggestion that the anisotropy of the stress only
reflects on the anisotropy of the kinetic temperature is not perfect, the result
gives a reasonable physical picture, at least, for r and z directions.

5.3.3 Constitutive Equation

Here, let us estimate the constitutive equations for granular jets. Let us evaluate
the shear viscosity from the data of the stress tensor. The theoretical shear vis-
cosity for frictionless granular fluids, which depends on temperature and volume
fraction, is given by

σrz = −ηkinDrz, (5.4)

ηkin(φ, Tg) =
5

16d2

√
mTg

π
η∗(φ) (5.5)
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Figure 5.6: The diagonal components of the stress tensor for the frictional case
with several φ̃0 divided by nTα, where Tα is the temperature for α direction Tα ≡∑

imu
2
iα/N . Red empty points, blue filled points, purple half-filled points and

the solid black line denote Pz/nTz, Pr/nTr, Pθ/nTθ and Eq. (5.2), respectively.

with strain rate Drz ≡ (∂v̄r/∂z+ ∂v̄z/∂r)/2. The dimensionless shear viscosity
η∗(φ) [52] is described as

η∗(φ) ≡ ηk∗{1 +
4φχ(1 + e)

5
} +

3γ∗

5
(5.6)

ηk∗(φ) ≡ 1 − 2(1 + e)(1 − 3e)φχ/5
ν∗η − ζ∗/2

(5.7)

γ∗(φ) ≡ 128
5π

φ2χ(1 + e)(1 − c∗

32
) (5.8)

ν∗η(φ) ≡ χ[1 − (1 − e)2

4
][1 − c∗

64
] (5.9)

ζ∗(φ) ≡ 5
12
χ(1 − e2)(1 +

3c∗

32
) (5.10)

c∗ ≡ 32(1 − e)(1 − 2e2)
81 − 17e+ 30e2(1 − e)

. (5.11)

The shear viscosity is usually evaluated by plotting data points on a σrz vs
Drz plane. However, as shown in Appendix D, if we plot data for each mesh on
the plane, the shear viscosity evaluated from a slope on the plane is negative,
which is totally unphysical. This negative slope is caused by large density and
temperature variations in each mesh. Therefore, the viscosity may be estimated
locally by using density and temperature in the corresponding mesh.

For the frictional case, the yield stress σY , which is the residual stress without
deformation may exist in general. Thus, the constitutive equation in Eq. (5.4)
is replaced by σrz = σY −ηDrz, for this case. However, in this paper, we assume
σY = 0. The reason for the absence of the yield stress is based on the following
observations.

26



-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.04 0.08 0.12 0.16

Figure 5.7: Analysis on the µ∗ vs I plane. Numerical data can be fitted into
black solid lines µ∗ = aI.

On the assumption of the zero yield stress

We show that the assumption of the zero yield stress would be natural, by
introducing the effective friction coefficient. Let us analyze the friction coeffi-
cient, following the ref. [131]. We estimate strain rate Drz as ∂v̄r(r,∆z/2)/∂z '
(v̄r(r, 3∆z/4)−v̄r(r,∆z/4))/(∆z/2) and ∂v̄z(r, z)/∂r ' (v̄z(r+∆r/2, z)−v̄z(r−
∆r/2, z))/∆r. Since we evaluate the physical quantities near the wall, the mesh
0 < z < ∆z is divided into 0 < z < ∆z/2 and ∆z/2 < z < ∆z to calculate
∂v̄r(r,∆z/2)/∂z and 0 < r < Rtar is divided into 0 < r < ∆r/2,∆r/2 < r <
3∆r/2, · · · .

Introducing the effective friction coefficient µ∗ ≡ −σrz/P and the inertia
number I ≡ Drz

√
P/md, we plot the observed data µ∗ vs I in Fig. 5.7. From

the result of simulation, the obtained effective friction coefficient µ∗ can be
fitted by µ∗ = aI with a constant a within error bars, where fitting values are
a = 0.240 and a = 0.223 for frictional and frictionless case, respectively. The
solid lines represent the corresponding fitting lines. Judging from the fitting,
the assumption of zero yield stress in our setup [47] would be natural.

There are other three reasons. The first reason is the velocity distribution
function. It is known that the significant effect of Coulombic slip may appear
in the non-Gaussianity of velocity distribution functions (VDF), which is char-
acterized by flatness of them. For grains in a vibrating container, the VDF
are near to the Gaussian for frictionless cases, while the VDF for frictional
cases are exponential-like [161]. We scale VDF f(vα) as f(vα) = v−1

α0 f̃(cα) with∫
dcαf̃(cα) =

∫
dcαc

2
αf̃(cα) = 1,

∫
dcαcαf̃(cα) = 0 and vα0 ≡

√
2Tα/m for each

α. Scaled VDF for each velocity components are shown in Fig. 5.8, where all of
the VDFs are near to Gaussian f̃(cα) = exp(−c2α/2)/

√
2π even for the frictional

case, because friction constant µ = 0.2 is sufficiently small, and are far from
exponential-like VDF f̃(cα) = exp(−

√
2|cα|)/

√
2. The flatness, which is defined

as 〈x4〉/〈x2〉2 = 〈x4〉 for 〈x2〉 = 1 with 〈· · · 〉 ≡
∫
dxf̃(x) · · · , is summarized in
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Table 5.1: Flatness for the frictionless and the frictional case.
z r θ

frictionless case 2.87 2.86 3.41
frictional case 2.70 2.98 3.71

Table 5.1 for φ̃0 = 0.90. It should be noted that the flatness with Gaussian
VDF is 3.0 and that with exponential VDF is 6.0. Although the flatness with θ
component of VDF slightly deviates from 3.0, it is still far from 6.0, and thus,
the effect of Coulombic slip with friction constant µp = 0.2 is not significant.
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Figure 5.8: Scaled VDF f̃(cα) for φ̃0 = 0.90. Empty points and filled points de-
note the frictionless case and the frictional case, respectively. The black solid line
is f̃(cα) = exp(−c2α/2)/

√
2π and the dashed line is f̃(cα) = exp(−

√
2|cα|)/

√
2.

The second reason is the small Coulombic constant. In this case, renormal-
ization of restitution coefficient is known to be valid [63,64,67]. We stress here
that the residual stress for the frictional granular fluid with small Coulombic
constant does not exist in a usual setup. We also note that there exists no
characteristic feature of Coulombic friction for small µp such as µp = 0.2 except
for the decreases of the jamming density even for the jamming transition [163].

Moreover, once we assume that shear viscosity corresponds to the value
from kinetic theory η(r) = ηkin(φ, Tg), the extrapolated σY are obtained at
each mesh, through σrz(r) = σY (r) − ηkin(φ(r), Tg(r))Drz(r). As a result, |σY |
is sufficiently small for r/Rtar > 0.40 (Table 5.2).

Thus, σY = 0 is a self consistent assumption if kinetic theory is adopted.
From these reasons, we assume σY = 0.

Shear Viscosity

Now, let us try to compare the theoretical expression in Eq. (5.5) with the
numerical measured shear viscosity. The comparison of η∗, which is the non-
dimensional shear viscosity introduced in Eq. (5.5), for 0.2 < r/Rtar < 1.0
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Table 5.2: Extrapolated yield stress −σY × 103.
PPPPPPPPφ̃0

r/Rtar 0.30 0.50 0.70 0.90

0.30 6.41 ± 3.3 0.701 ± 1.5 0.434 ± 0.66 0.447 ± 0.26
0.40 7.54 ± 5.8 -0.159 ± 3.2 0.538 ± 1.1 0.364 ± 0.52
0.45 8.79 ± 2.3 0.800 ± 2.1 0.440 ± 0.94 0.783 ± 0.44
0.50 6.79 ± 2.8 -0.574 ± 1.9 0.632 ± 0.94 0.608 ± 0.32
0.80 7.00 ± 4.8 2.19 ± 1.7 -0.953 ± 1.3 0.392 ± 0.50
0.90 5.21 ± 2.7 -0.540 ± 2.9 -0.396 ± 1.2 0.243 ± 0.83
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Figure 5.9: Non-dimensional shear viscosity η∗, which is defined in Eq. (5.5),
for several φ0/φfcc in 0.2Rtar < r < Rtar. Black solid lines denote theoretical
curves.

is shown in Fig. 5.9. Although there is a slight deviation between them for
large φ i.e. small r, which may be the effect of the singularity in the center
r = 0, the theoretical curve reproduces other numerical results. We can, thus,
conclude that the flow has the finite shear viscosity which has the same order
of the predicted value by kinetic theory. The reason why the simulations are
approximately described by the Euler equation is that the strain rate itself is
small i.e. 0.01 < Drzd/

√
Tg/m < 0.4, and thus σrz/σzz is small.

Shear viscosity on µ∗ vs I plane

From the analysis on µ∗ vs I plane, the constitutive equations can be obtained
as

σrz = −ηDrz (5.12)

η∗µ =
16a
5

√
6φ(1 + 2φ(1 + e)χ). (5.13)
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Figure 5.10: Comparison of the non-dimensional shear viscosity based on the
kinetic theory η∗(φ) [52] with our result, where the solid line and the dashed
line denotes for the frictional case and the frictionless case, respectively.

Here, non-dimensional shear viscosity η∗µ = η∗µ(φ) on µ∗ vs I plane is introduced
as η∗µ ≡ η/η0 with the shear viscosity η and η0 ≡ 5

√
πmTg/16d2 by convention

[52].
The obtained shear viscosity is proportional to

√
Tg, which is consistent

with kinetic theoretical results [47]. However, the obtained density dependence
of η∗µ is different from ref. [52]. The non-dimensional shear viscosity based on
the kinetic theory η∗(φ) is compared with our result in Fig. 5.10. The solid
line and the dashed line denotes for the frictional case and the frictionless case,
respectively. The obtained shear viscosity is less than 80% of that of the kinetic
theory. It should be noted that the obtained shear viscosity is also finite, even
through the analysis based on the effective friction coefficient.

The difference of density dependence of non-dimensional shear viscosity
would be understood in the followings. In the analysis on µ∗ vs I plane, the
density dependence of transport coefficient is assumed to appear only through
pressure P , i.e.

η(P, Tg, φ) = η(P (φ, Tg)). (5.14)

Thus, once the equation of state is determined, η∗µ(φ) is uniquely obtained.
On the other hand, in ref. [52], because density dependence of η∗ results from
the kinetic theory, results are different. At present, we could not judge which
viscosity is better. However, we should note that the η ∝

√
Tg can be obtained,

even under the assumption of Eq. (5.14) [48].

5.4 Is granular flow really a“ perfect fluid?”
We have numerically investigated the granular jet which impacts on a fixed
wall. We have revealed that the granular flow after the impact has a finite
shear viscosity which has the same order as the predicted value from kinetic
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theory, and thus the similarity between the granular flow and the perfect fluid is
superficial, which comes from a small strain rate. This result gives a theoretical
explanation of the similarity between granular flow and perfect fluid, which is
reported in the experiment and the two-dimensional study [31, 38] Although
both the pressure and the viscosity are not far from the predictions by kinetic
theory, there exists a large normal stress difference in contrast to the case of
kinetic theory.
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Chapter 6

Rheology of Granular Jets
in Two Dimensions:
Jet-induced jamming

(i)(i) (ii)

Figure 6.1: (i) A typical snapshot of the simulation for the frictional case with
φ̃0 = 0.90. Blue particles and green particles denote grains with diameter 0.8d
and d, respectively and red particles are wall-particles. (ii) All of the corre-
sponding contact forces between grains are visualized as blue colored arrows.

In this chapter, we investigate the rheology of the granular jets in two dimen-
sions. We evaluate physical quantities near the wall in two regions: 0 < x ≤ 5d
and 5d < x ≤ 10d, where we call (a) and (b) layers in the followings, respec-
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tively. We use Rjet/d = 15.0 and Rtar/Rjet = 2.2 with the target radius Rtar

and the jet radius Rjet. We adopt the Cartesian coordinate, where y = 0 is
chosen to be the jet axis, and divide calculation region into the y direction
y = −5∆y,−4∆y, · · · , 0, · · · , 5∆y, with ∆y ≡ Rtar/5. Then we estimate phys-
ical quantities in the corresponding mesh region with k∆y < y < (k + 1)∆y
(k = −5,−4, · · · , 4). Numerical data are averaged over ten initial configura-
tions with the same φ̃0 and error bars in figures denote their difference.

Jet

Target

(a)	layer (b)	layer

Figure 6.2: A schematic picture of the calculation region. We evaluate physical
quantities near the wall in (a) layer 0 < x ≤ 5d and (b) layer 5d < x ≤ 10d.

We use kn = 1.99 × 103mu2
0/d

2, ηn = 5.75u0/d for µp = 0.4, and kn =
7.96 × 102mu2

0/d
2, ηn = 10.15u0/d for µp = 1.0. As for µp = 0.2 or frictionless

case, we adopt kn and ηn in Table 4.1. This set of parameters implies that the
duration time is tc = 0.10d/u0 for frictionless case and µp = 0.2, tc = 0.05d/u0

for µp = 0.4 and tc = 0.01d/u0 for µp = 1.0, the restitution coefficient for normal
impact is unchanged e = 0.75 for the frictionless or all µp cases. If we use the
same tc for large µp, because of the existence of many overlaps between grains,
an artificial burst-like flow emerges, as is shown in the Appendix E, which is
suppressed as tc becomes smaller.

A typical snapshot of simulation and that of the contact force for the fric-
tionless case are shown in Fig. 6.1 (i) and (ii), respectively. Blue and green
particles and red particles denote grains with diameter 0.8d and d, and wall-
particles, respectively in Fig. 6.1 (i) and all of the corresponding contact forces
between grains are visualized as blue colored arrows in Fig. 6.1 (ii). It is easily
found that the dense flow with well-developed contact forces emerges during the
impact.
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We calculate the stress tensor as in Appendix C. The microscopic definition
of the stress tensor at r is given by

σµν(r) =
1
A

∑
i

muiµuiν +
1
A

∑
i<j

F ij
µ r

ij
ν , (6.1)

where i and j are indices of particles, µ, ν = x, y, contact force between i th and
j th particles F ij

µ and
∑

i denotes the summation over the particles denoted by
i located at r. A is the are of each mesh at r and uiµ(r) = viµ − v̄µ(r) with the
mean velocity v̄µ(r) in the mesh at r.

6.1 Rheology of Granular Jets for the friction-
less bi-disperse grains

In this section, we explain the obtained results on rheological properties of 2D
granular jets for frictionless grains. There are four subsections in this section,
which are the discussion on the dead zone, the profile of the stress tensor, the
equation of state and the constitutive equation, respectively.

6.1.1 Existence of the dead zone and the profile of the are
fraction

The existence of the dead zone near the target, where the motion of the grains
is frozen, has been reported by Ellowitz et al [38] and Guttenberg [39]. In our
3D study, however, we confirm that there is no definite dead zone through the
analysis of the granular temperature Tg ≡

∑
imu2

i /DN in D(= 2, 3) dimen-
sions, while the average velocity of grains becomes small near the target [48].
On the other hand, we verify the existence of the frozen layer (a) in 2D, while
the motion is not frozen in (b) layer. The comparisons of Tg in 2D and 3D for
the frictionless case are shown in Fig. 6.3 (i). Although Tg slightly smaller at
the center in 3D, it is still larger than those in 2D.

The profile of the area fraction divided by φmax with φmax ≡ π/(2
√

3) '
0.907 in 2D and φmax ≡ 0.740 in 3D are shown in Fig. 6.3 (ii) for the frictionless
case. It is apparent that the granular flow in 2D becomes denser than that in
3D.

6.1.2 Profile of the stress tensor

The profiles of the stress tensor for (a) and (b) layer of frictionless grains are
shown in Fig. 6.4 (i) and (ii), respectively. We stress that there exists a large
normal stress difference between σxx and σyy in each layer as in 3D case [47],
which has not been reported in other papers.

Ellowitz et al. suggested that the profile of the velocity and the pressure
for the granular jet is reproducible from the simulation of a perfect fluid [38]
but our result may not support their claim. Indeed, the shear stress looks small
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Figure 6.3: The profile of Tg for φ̃0 = 0.90 is shown in (i). There exists the dead
zone in (a) layer, which is denoted by red empty squares. Blue filled squares
denote Tg in (b) layer, where the dead zone does not exist. Tg in 3D, which is
denoted by purple asterisks, is higher than those in 2D. The profile of φ/φmax

for φ̃0 = 0.90 is shown in (ii). φ/φmax Grains are well packed in 2D, while they
are not in 3D.

but finite. Moreover, the large normal stress difference exists in both layers,
which cannot be observed in the perfect fluid. We should note that their claim
is supported by the simulation of a perfect fluid which reproduces some similar
feature of their hard core simulation. However, they have not discussed the
stress tensor itself in their simulation. In addition, Huang et al. indicated the
relevant role of the contact stress in their DEM simulation, which may be an
indirect objection to the perfect fluidity of the 2D granular jet flow [40].

6.1.3 Equation of state

Let us discuss the equation of state for the 2D granular jet impact. We estimate
strain rate Dxy ≡ (∂v̄y/∂x+ ∂v̄x/∂y)/2 as ∂v̄y(∆x/2, y)/∂x ' (v̄y(3∆x/4, y)−
v̄y(∆x/4, y))/(∆x/2), ∂v̄y(3∆x/2, y)/∂x ' (v̄y(7∆x/4, y)−v̄y(5∆x/4, y))/(∆x/2)
and ∂v̄x(x, y)/∂y ' (v̄x(x, y + ∆y/2) − v̄x(x, y − ∆y/2))/∆y. Since we evalu-
ate the physical quantities near the wall, the mesh 0 < x < ∆x is divided
into 0 < x ≤ ∆x/2 and ∆x/2 < x < ∆x, and ∆x ≤ x < 2∆x is divided
into ∆x ≤ x < 3∆x/2 and 3∆x/2 ≤ x < 2∆x to calculate ∂v̄y(∆x/2, y)/∂x
and ∂v̄y(3∆x/2, y)/∂x. −Rtar < y < Rtar is divided into −11∆y/2 < y <
−9∆y/2,−9∆y/2 < y < −7∆y/2, · · · 9∆y/2 < y < 11∆y/2 to calculate ∂v̄x(x, y)/∂y.

We follow the analysis in ref. [131]. Here, we introduce two dimensionless
numbers consisting of pressure: IT ≡

√
Tg/Pd2 and Is ≡ Dxy

√
m/P with

pressure P ≡ (σxx + σyy)/2. We plot numerical data on φ vs IT plane and φ vs
Is plane, in Fig. 6.5 (i) and (ii), respectively.

We can fit the data by the equations

φ = φT − aT I
2/αT

T (6.2)

φ = φs − asI
2/αs
s , (6.3)
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Figure 6.4: The profile of the stress tensor for φ̃0 = 0.90 in (a) and (b) layer
is shown in (i) and (ii), respectively. There exist large normal stress differences
between σxx and σyy and the shear stress is much smaller than the normal stress
in (b) layer, though it is not so small in (a) layer.

with constants φT , aT , αT , φs, as and αs. Fitting parameters are determined
simultaneously by using Levenberg-Marquardt algorithm [169]. The obtained
equations of states are written as

Pd2

Tg
=

aαT

T

(φT − φ)αT
(6.4)

P

mD2
xy

=
aαs

s

(φs − φ)αs
, (6.5)

where the comparison of Eqs. (6.2) and (6.3)with numerical data for the fric-
tionless case are shown in Fig. 6.5 (i) and (ii), respectively.
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Figure 6.5: Numerical data for the bi-disperse case of frictionless grains are plot-
ted on φ vs IT plane (i) and φ vs Is plane (ii). Red empty and blue filled points
denote data of (a) and (b) layer for several φ̃0, respectively. The corresponding
solid lines in figures are fitting equations (6.2) and (6.3).
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Obtained parameters are φT = 0.858± 0.006, aT = 0.980± 0.1, αT = 1.15±
0.1, φs = 0.834 ± 0.001, as = 3.94 ± 0.5 and αs = 1.36 ± 0.05, where error
originates from the fitting (Fig, 6.5 (i)(ii)). Note that the conventional jamming
point φJ ' 0.8425 is located between φs and φT and close to φs [149]. The
divergences of pressure for the frictionless case are written as

Pd2

Tg
∼ (φT − φ)−1.15,

P

mD2
xy

∼ (φs − φ)−1.36. (6.6)

Hatano demonstrated the elegant scaling law in the vicinity of φJ , where the
corresponding exponents are estimated as αs = 2.8 and αT = 1.7 from his data
[146]. Otsuki and Hayakawa showed the phenomenological explanation of the
critical behavior near φJ and they predicted αs = 4.0 and αT = 2.0 [142, 145].
Our obtained exponents are smaller than conventional ones. The discrepancy
between these may result from difference of the setups. Because the strain rate
cannot be controlled in our setup, the jamming point is not clearly defined.
Therefore, the divergence of the pressure is duller than the case of the usual
jamming. We note that the exponents for the conventional jamming strongly
depends on the choice of φJ [145].

On the other hand, by extrapolating the critical behavior from the kinetic
regime, the pressure behaves as αT = 1.0 i.e.

Pd2

Tg
− 1 = φg(φ) ∝ φc

φc − φ
(6.7)

as φ → φc, with radial distribution function g(φ) and critical density φc, while
αT > 1 for the jamming [142, 145, 146]. In our case, the data may satisfy
Pd2/Tg ∼ (φc − φ)−1. Thus, the divergence of Pd2/Tg is similar to the ex-
trapolation from the kinetic theoretical regime, rather than the jamming. We
note that one of the obtained diverging densities is larger than conventional one:
φT > φJ . Although αT is close to the kinetic theoretical result, the analysis
of αT and φT may not be reliable, because the data for (a) and (b) layer are
separate, due to the difference of the profile of Tg. The separation of data in
(a) and (b) layer is discussed in Sec. 6.2.

From Eqs. (6.4) and (6.5), Tg and Dxy are expected to satisfy

md2D2
xy

Tg
=
aαT

T (φs − φ)αs

aαs
s (φT − φ)αT

. (6.8)

The validity of Eq. (6.8) is verified in Fig. 6.6 for the frictionless case, which
can be independent check of the scaling laws (6.4) and (6.5). From Fig. 6.6,
Eq. (6.8) well reproduces the data for φ < φs. We note that the proportional
relation between Tg ∝ md2Dxy as in Eq. (6.8) can be found in the context of
the Bagnold scaling [113].
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Figure 6.6: Comparison of the numerical data for
√
md2Dxy/Tg with Eq. (6.8)

are compared for φ < φs.

6.1.4 Constitutive relation

Effective friction constant

We discuss Is dependence of effective friction constant µ∗ ≡ −σxy/P to obtain
the constitutive equation. Numerical data for the frictionless case and the fric-
tional case are shown in Fig. 6.7 (i) and (ii), respectively. The behavior of µ∗

is conventionally described as

µ∗(Is) = µs + (µmax − µs)(1 + I0/Is), (6.9)

where µ∗ starts from a critical value of µs at zero shear rate and converges to
a limiting value of µmax at high Is. We obtain µs = 0.0153 ± 0.009, µmax =
0.521 ± 0.06 and I0 = 0.0820 ± 0.02 for the frictionless case by fitting. Thus,
µ∗(Is) can be fitted by the conventional relation (6.9). We should stress that
µs is close to zero.

Some researchers proposed a different constitutive equation

µ = µs + bIβ
s , (6.10)

which also well reproduces numerical data [126, 129, 131–134], where β ranges
from 0.28 ∼ 1.0, depending on the dimension, microscopic parameters and the
friction constant of grains. We can fit it into numerical data within error bars,
where we obtain b = 1.18 ± 0.1 and β = 0.592 ± 0.03, assuming µs = 0. The
constitutive equation can be described as

σxy

mD2
xy

= − ba
(1−β/2)αs
s

(φs − φ)(1−β/2)αs
, (6.11)

which is checked independently against the numerical data in Fig. 6.8. Ex-
ponents are estimated as (1 − β/2)αs ' 0.96. Because, we use the power-law
friction β > 0, the divergences of shear stress are weaker than those of P . Here,
because the shear stress is proportional to the square of the shear rate, the
Bagnold scaling is valid in our setup.
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Figure 6.7: Numerical data for the bi-disperse case of frictionless grains are
plotted on µ∗ vs Is plane. Red and blue points denote data for (a) and (b)
layer for several φ̃0, respectively. All points are fitted into Eq. (6.9) proposed
phenomenologically in Ref. [127] and the Eq. (6.10) for power-law friction,
where we cannot judge which equation is better from the data.

Shear viscosity

Here, let us discuss the divergence of the shear viscosity. We define shear
viscosity η ≡ −σxy/Dxy and non-dimensional shear viscosity η∗ ≡ η/η0 with
η0 ≡

√
mTg/4πd2 and

η∗ ∝ (φs − φ)−βs . (6.12)

By using the result from the power-law friction in Eq. (6.11), η∗ diverges as

η∗ =
−σxy

Dxyη0
∝ (φT −φ)−(1−β/2)αT

(
md2D2

xy

Tg

)−(1−β/2)αT

∝ (φs −φ)
−(1−β/2)αs

,

(6.13)
where we have used Eq. (6.8) and (6.11). η∗ diverges at φs, which is different
from the divergence of Pd2/Tg, with exponent βs = (1 − β/2)αs ' 0.96.

For the conventional jamming transitions of frictionless grains, the exponents
for the divergence of η∗ are estimated to be 1.95 from data in Ref. [146] and
3.0 in Ref. [142]. Thus, our corresponding exponent βs = 0.96 is much smaller
than conventional ones, rather close to the prediction that η∗ diverges at density
different from Pd2/Tg with the exponent βs = 1.0, which is the result of the
extrapolation from kinetic theoretical regime by Garcia-Rojo [147].

Let us summarize the results for the frictionless case. There exists the dead
zone, at least, in (a) layer, though it does not exist in (b) layer. The shear
stress is much smaller than normal stress, at least in (b) layer. Because grains
are easily packed after the impact, the system is near the jammed state, while
diverging exponents are smaller than conventional ones. Although, the data in
(a) and (b) layer are separate on φ vs IT plane, due to the coexistence of the
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Figure 6.8: The divergences of the shear stress and Eq. (6.11) are independently
checked for the bi-disperse case of frictionless grains. Red and blue points denote
data for (a) and (b) layer for several φ̃0, respectively. Eq. (6.11) well reproduces
numerical results. Because σxy itself in (b) layer are small, the error bars in (b)
layer are larger than those in (a) layer.

frozen layer and non-frozen layer, Pd2/Tg diverges at φT with the exponent close
to the extrapolation from the kinetic theoretical regime. As for the analysis on φ
vs Is plane, the conventional diverging density φJ is located between φs and φT

and close to φs, and the corresponding exponent αs is smaller than conventional
one. We can use both of Eqs. (6.9) and (6.10) for µ∗. If we adopt the power-law
friction, non-dimensional shear viscosity η∗ diverges, similar to the prediction
by Garcia-Rojo [147].

6.2 Effects of the friction constant

In this section, we discuss the effects of the friction constant on the jet-induced
jamming. There are four subsections in this section, which are the discussion
on the dead zone, the profile of the stress tensor, the divergence of the pressure
and the friction law, respectively.

6.2.1 Existence of the dead zone and the profile of the are
fraction for the frictional case

We show the profile of Tg and φ in Fig. 6.9 (i) and (ii), respectively. Red empty
points denote the data in (a) layer, and blue filled ones denote those in (b) layer.
In Fig. 6.9 (i), numerical data for Tg in (a) layer drop at the center, i.e. the
motion of grains is frozen, while those in (b) layer do not. The existence of the
dead zone in (a) layer and its absence in (b) layer are confirmed even for the
frictional case. Thus, the frozen layer (a) and the non-frozen layer (b) coexist
even for the frictional cases. φ decreases, as µp becomes larger.
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Figure 6.9: The profile of Tg and φ are shown in (i) and (ii), respectively. The
existence of the dead zone in (a) layer and its absence in (b) layer are confirmed
even for the frictional case. φ decreases, as µp becomes larger.

6.2.2 Profile of the stress tensor

The profiles of the stress tensor for (a) and (b) layer are shown in Fig. 6.10
(i)(ii) for µp = 0.2, (iii)(iv) for µp = 0.4 and (v)(vi) for µp = 1.0. Regardless of
the friction constant µp, the shear stress is much smaller than the normal stress
in (b) layer, though it is not so small in (a) layer. We stress that the profile
of σµν is not much affected by µp and that there exists a large normal stress
difference between σxx and σyy in each layer.

6.2.3 Divergence of the pressure

Let us discuss the effect of µp on the divergence of the pressure. We obtain
the diverging density φT and φs and the corresponding exponents αT and αs

for (a) and (b) layer separately, via fitting numerical data into Eqs. (6.2) and
(6.3), respectively. The results for the fitting are shown in Fig. 6.11 (i)(ii) for
the frictionless case, (iii)(iv) for µp = 0.2, (v)(vi) for µp = 0.4 and (vii)(viii) for
µp = 1.0. The effect of µp would be apparent as the separation of data between
(a) and (b) layer not only on φ vs IT plane, but also φ vs Is plane, which reflects
the coexistence of the frozen layer (a) and the non-frozen layer (b).

The changes in our diverging densities φs and φT for each layer are shown
in Fig. 6.12 (i). For comparison, we show one of the jamming points φL in
Ref. [137]. φs slightly decreases as the value of µp increases, while φT shows
different tendency between (a) and (b) layer. φT for µp = 1.0 may be unphysical,
because the interpolation into IT → 0 is unreliable. Although the qualitative
behavior of φs in (a) and (b) layer is similar to φL, we note that the decrease
of our critical densities φs is a little gentler than that of φL. The results for
exponents are shown in Fig. 6.12 (ii), where both exponents in (a) layer increases
as µp increases, while they decrease in (b) layer.
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6.2.4 Friction law

The results for the friction laws Eqs. (6.9) and (6.10) are shown in Fig. 6.13 (i)
for µp = 0.2, (ii) for µp = 0.4 and (iii) for µp = 1.0, where numerical data can
be fitted by both Eqs. (6.9) and (6.10). We stress that the µ∗ monotonically
increases from near zero, as the increment of Is, even for the large µp case.
Assuming µs = 0, we obtain the exponents β of Eq. (6.10) for frictional cases,
which are insensitive to µp. The results for β, µ0 and µmax are shown in Fig.
6.14.

Let us summarize the roles of the friction µp in the granular jet impacts in
2D. The profile of the stress tensor, the existence of the dead zone in (a) layer
and its absence in (b) layer, and the friction law are insensitive to µp, at least
µp ≤ 1.0. One of the critical densities φs decreases gentler than conventional
one φL, while some of φs in (a) or (b) layer are close to φL. The data (a) and
(b) layer deviate from each other on φ vs IT and φ vs Is plane, as µp becomes
larger. Although interpolation on φ vs IT plane is unreliable, both exponents
αT and αs increases (decreases) as the increment of µp in (a) layer ((b) layer).

6.3 Rheology of Granular Jets for the mono-
disperse grains

Here, we discuss the impact of granular jets in 2D for the mono-disperse case.
A typical snapshot zoomed near the target is shown in Fig. 6.15, where grains
are crystalized near the wall. The black solid lines in Fig. 6.15 (i) are drawn
by hand to clarify the grain boundary between the crystallized region and the
disordered region, where the boundary becomes a slip line. We also visualize all
of the corresponding contact forces in Fig. 6.15 (ii).

6.3.1 Profile of the stress tensor

The profiles of the stress tensor are shown in Fig. 6.16. In contrast to the bi-
disperse systems, because of the crystalized regions, the shear stress is not small
for mono-dispersed systems, even in (b) layer. Because the system is crystalized
in (a) layer, σxx or σyy might be flat at the center.

6.3.2 Divergence of the pressure

Here, we discuss the divergence of the pressure. Fitting results for Eqs. (6.2) and
(6.3) are shown in Fig. 6.17 for the frictionless case (i)(ii), µp = 0.2 case (iii)(iv),
µp = 0.4 (v)(vi) and µp = 1.0 (vii)(viii), where the fitting might be inappropriate
as µp become larger and the critical behavior of Pd2/Tg and P/mD2

xy would
be questionable, because obtained critical area fractions exceed the maximum
packing φmax ' 0.907. The obtained critical fractions and exponents for the
frictionless case are φT = 0.936±0.006, αT = 2.06±0.1, φs = 0.904±0.003, αs =
3.28 ± 0.2 for (a) layer and φT = 0.975 ± 0.01, αT = 0.975 ± 0.01, φs = 0.984 ±
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0.03, αs = 6.86 ± 2 for (b) layer. Due to the crystallization, exponents αs are
larger than those for the corresponding bi-disperse case. Because there exists the
crystalized region in (a) layer, one of the critical fractions φs for the frictionless
case is close to the area fraction for a triangular crystal φmax ' 0.907, while
other critical fractions exceeds φmax. It is apparent that the data for (a) and (b)
layer are separated each other, due to the coexistence of the crystalized region
and disordered region, even on φ vs Is plane for the frictionless case.

6.3.3 Existence of two metastable branches in Friction law

We plot µ∗(Is) for the mono-disperse case of the frictionless case, µp = 0.2, 0.4
and µp = 1.0 case in Fig. 6.18 (i)(ii)(iii) and (iv), respectively. Obviously, the
behavior for the mono-disperse case is different from that for the bi-disperse
case. First of all, µ∗(Is) for (a) layer and (b) layer cannot be fitted into a single
curve, unlike the bi-disperse case. Judging from the snapshot (Fig. 6.15), grains,
at least, in (a) layer are partially crystallized. Therefore, it is reasonable that
the response of the crystallized region would be different from that in disordered
regions.

The non-monotonic behavior of µ∗(Is) in (a) layer, which are observed in
both frictional and frictionless cases, can be understood as follows. Because of
the crystallization, a grain is trapped in a crystallized region, at low Is, where
µ∗ would increase. However, as Is increases, the grain can escape from the
crystallized region. Thus, µ∗ decreases, for large Is.

µ∗(Is) for frictionless and frictional cases are different in (b) layer. The
most remarkable difference between the frictionless and the frictional cases is
the existence of peak of µ∗ at a small Is for frictionless case, while there is
no such a peak for frictional case. Because a frictional grain can roll over
grains, grains easily form a group. Therefore, the boundary between such groups
becomes a slip line. Thus, µ∗(Is) would be constant as Is becomes smaller. On
the other hand, because a frictionless grain cannot either roll over them nor
slip, it is trapped in the crystallized region, even as Is increases. For this
reason, µ∗(Is) for frictional and frictionless case exhibit different behavior in
(b) layer. However, we should stress that there exist two metastable branches
both frictionless and frictional cases.
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Figure 6.10: The profile of the stress tensor in the corresponding layer (a) and
(b) for φ̃0 = 0.90, (i)(ii) for µp = 0.2 case, (iii)(iv) for µp = 0.4 case and (v)(vi)
for µp = 1.0 case. There exist large normal stress differences between σxx and
σyy and the shear stress is much smaller than the normal stress in (b) layer,
though it is not so small in (a) layer.
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Figure 6.11: Numerical data for (a) and (b) layer are fitted into Eqs. (6.2)
and (6.3) separately, for the frictionless case (i)(ii), µp = 0.2 (iii)(iv), µp = 0.4
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Figure 6.13: Numerical data for µp = 0.2 (i), µp = 0.4 (ii) and µp = 1.0 (iii)
within error bars can be fitted into Eqs. (6.9) and (6.10), where we cannot
judge which equations are better. It should be noted that the µ∗ monotonically
increases from near zero, as the increment of Is, even for the large µp case.

47



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

,

Figure 6.14: The insensitivity of β, µ0 and µmax to µp. µ0 is almost zero, even
for large µp case.

(i) (ii)

Figure 6.15: Typical snapshot of the simulation for the frictionless case with
φ̃0 = 0.90 near the target. Yellow particles denote mono-disperse grains and red
particles are wall-particles (i). The black solid lines are drawn by hand to clarify
the grain boundary between the crystallized region and the disordered region,
where the boundary becomes a slip line. Crystallization into triangular lattice
can be seen near the region enclosed by the black lines. All of the corresponding
contact forces between grains are visualized as blue colored arrows in (ii).
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Figure 6.16: The profile of the stress tensor for the frictionless case (i)(ii),
µp = 0.2 case (iii)(iv), µp = 0.4 (v)(vi) and µp = 1.0 (vii)(viii), in (a) or (b)
layer.
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Figure 6.17: Numerical data for (a) and (b) layer are fitted into Eqs. (6.2) and
(6.3) separately, for the frictionless case (i)(ii), µp = 0.2 case (iii)(iv), µp = 0.4
(v)(vi) and µp = 1.0 (vii)(viii), where the fitting might be inappropriate as µp

become larger, because obtained critical densities exceed 1.0. It is apparent
that the data for (a) and (b) layer separated each other, due to the coexistence
of the crystalized region and disordered region, even on φ vs Is plane for the
frictionless case.
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Figure 6.18: Numerical data for the frictionless case (i), µp = 0.2 case (ii),
µp = 0.4 case and µp = 1.0 case are plotted on µ∗ vs Is plane. Red and blue
points denote data for (a) and (b) layer for several φ̃0, respectively. Unlike
the bi-disperse case, µ∗(Is) for (a) and (b) cannot be fitted into a single curve
and behave non-monotonically. µ∗(Is) for frictional and frictionless cases show
similar behavior in (a) layer. However in (b) layer, because frictionless grains
cannot roll over the crystallized region, µ∗(Is) for the frictionless case shows
similar dependence on Is to that in (a) layer, while the corresponding µ∗(Is) for
frictional case dose not.
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Chapter 7

Discussion and Summary

We have numerically investigated impact processes of granular jets both in 2D
and 3D by using DEM, to study the fluid state after the impacts. The cone-like
scattering pattern and the sheet-like pattern observed in an experiment can be
reproduced through our calculation. We have found that v2 is not proportional
to the eccentricity ε in 3D. The rheology of the granular jets after the impact
seem to depend on spatial dimensions.

In 3D, we have revealed that the mono-disperse granular flow after the im-
pact has a finite shear viscosity which has the same order as the predicted value
from kinetic theory. Therefore, the similarity between the granular flow and the
perfect fluid, which comes from a small strain rate, is superficial [47]. This result
provides a theoretical explanation of the similarity between granular flow and
perfect fluid, which has been reported in an experiment and a two-dimensional
study [31, 38]. We have assumed σY = 0 based on the analysis on µ∗ vs I
plane [48]. This assumption is strong for the comparison between kinetic theory
and our data. For the large-µp case, non-Gaussianity emerges compared with
the small-µp case, and the validity of the renormalization of the restitution co-
efficient may not be valid. Results for the large Coulombic constant case will
be left as the future work, including the establishment of the kinetic theory of
grains with large µp. From the analysis on µ∗ vs I plane, we also obtain the
shear viscosity for the jet, whose density dependence is different from the kinetic
theoretical prediction. The difference of density dependence of non-dimensional
shear viscosity would result from the assumption that the density dependence
for the results on µ∗ vs I plane is assumed to appear only through the pressure
P .

Because the small strain rate would be the consequence for the geometry of
impact processes, we might expect that the shear stress is small not only for
dry grains, but also grains with attractive interactions or quantum many body
systems, such as the system of neutrons. Thus, the impacts of the jets composed
of Lenard-Jones particles through MD simulations or those composed of neu-
trons through AMD [7,8] are left as the future numerical work in 3D. Although
both the pressure and the viscosity are not far from the predictions of kinetic
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theory, there exists a large normal stress difference in contrast to the case of
kinetic theory. Though this inconsistency may be understood through a sim-
ple phenomenology, the kinetic theory under strong non-equilibrium conditions
would be necessary to construct, by introducing the anisotropic temperature Tα

instead of the granular temperature Tg as hydrodynamical variables.
In 2D, because grains are easily packed, the system is near the jammed state.

We confirmed the existence of the dead zone, which is reported in Ref. [38] in
our study at least in (a) layer, unlike our three-dimensional case [47,48]. There
exists large normal stress difference as in 3D. The shear stress is much smaller
than the normal stress, at least in (b) layer. We need to solve the inconsistency
in (a) layer with Ref. [38].

We have analyzed the jet-impact of frictionless bi-disperse grains. We found
the divergences of the pressure and the shear viscosity, which are similar to the
situation near the jamming transition, while the exponents are smaller than
the conventional jamming exponents. Although, reflecting the coexistence of
frozen layer and non-frozen layer, data on φ vs IT plane in (a) layer and (b)
layer separate, Pd2/Tg diverges similar to the extrapolation from the kinetic
theoretical regime at φT . However, data on φ vs Is plane can be fitted by a
single curve P/mD2

xy ∼ (φs − φ)−αs , where αs is smaller than conventional
exponent but is close to unity, and conventional φJ is located between φs and
φT . The effective friction constant µ∗ defined as the ratio between shear stress
and normal stress, monotonically increases from near zero, as the increment
of the strain rate. If we adopt power-law friction for µ∗, dimensionless shear
viscosity η∗ diverges at φs < φT similar to the extrapolation from the kinetic
theoretical regime. The different diverging densities between Pd2/Tg and η∗

can be also found in the usual jamming [147].
The effects of the friction of grains µp have been discussed. The larger µp

is, the more apparent the separation between (a) and (b) layer is, even on φ vs
Is plane, while the profile of the stress tensor, the friction law and the existence
of the dead zone in (a) layer and its absence in (b) layers are little affected by
µp, at least µp ≤ 1.0. One of the critical fractions φs decreases similar to the
behavior of φL. Although interpolation on φ vs IT plane is unreliable, both
exponents αT and αs increases (decreases) as the increment of µp in (a) layer
((b) layer).

For mono-dispersed systems, grains are crystalized near the wall after the
impact and several slip lines appears. In contrast to the bi- disperse systems,
because the crystalized regions exist, the shear stress is not small for mono-
dispersed systems, even in (b) layer. One of the critical densities φs for the
frictionless case in (a) layer is close to φmax ' 0.9069, though some of the
obtained critical densities for frictional cases are larger than 1.0, where the
fitting might be inappropriate and the critical behavior of Pd2/Tg and P/mD2

xy

would be questionable, as µp become larger. The separation of the data for
(a) and (b) layer is apparent, due to the coexistence of the crystalized region
and disordered region, even on φ vs Is plane for the frictionless case. Unlike
the bi-dispersed systems, the effective friction constants µ∗ for both frictional
and frictionless cases have two metastable branches for mono-disperse system
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because of the coexistence of a crystallized state and a liquid state, while µ∗

for the frictionless case in (b) layer is slightly different from that for frictional
cases.

Because the conventional jamming transition does not depend on the spa-
tial dimensions, the jamming induced by granular jet in 2D would be a new
phenomena during impact processes. To understand the jet-induced jamming
through analytical approaches, such as non-equilibrium MCT, are left as the
future works.
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Appendix A

The detail derivation for the
hydrodynamical equations
from Enskog equation

Here, we derive the hydrodynamical equations from RET equation.

A.1 Derivation of the moment equation from
RET equation

First, we derive continuity equation for 〈ψ〉
∂

∂t
〈ψ〉 = − ∂

∂x1α
Jα(ψ) + I(ψ). (A.1)

, where 〈· · · 〉 ≡
∫
d3v1f(x1,v1, t) · · · and Jα = Jc

α + Jk
α with

Jk
α ≡ 〈v1αψ〉 (A.2)

Jc
α ≡ σ3

4

∫
d3v1d

3v2d
2k

∫ 1

0

dλS(v12 · k)kα (A.3)

∆′ψf (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t),

I(ψ) ≡ σ2

2

∫
d3v1d

3v2d
2kS(v12 · k)∆ψf (2)(r1 + σk,v1; r1v2; t) (A.4)

from Enskog equation:

(
∂

∂t
+ v1 · ∇1)f(r1,v1, t) = JE [r1,v1|f(t)] (A.5)

JE [r1,v1|f(t)] ≡ σ2

∫
d3v2d

2kS(k · v12){Λf (2)(r1,v′′
1 ; r1 + σk,v′′

2 ; t)

−f (2)(r1,v1; r1 − σk,v2; t)} (A.6)
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Eq. (A.2) is directly obtained from the second term on the left hand side in Eq.
(A.5). We perform the calculation for∫

d3v1ψ(v1)JE [r1,v1|f(t)]

= σ2

∫
d3v1d

3v2d
2kS(k · v12){Λf (2)(r1,v′′

1 ; r1 + σk,v′′
2 ; t)

−f (2)(r1,v1; r1 − σk,v2; t)}ψ(v1), (A.7)

in the followings. By using

Λd3v1d
3v2|v12 · k| = d3v′′1d

3v′′2 |v′′
12 · k| (A.8)

Θ(v′′
12 · k) = Θ(−v12 · k), (A.9)

and k → −k, the first term on the right hand side of Eq. (A.7) is rewritten as

σ2

∫
d3v′′1d

3v′′2dk
2S(k · v′′

12)f
(2)(r1,v′′

1 ; r1 − σk,v′′
2 ; t)ψ(v1). (A.10)

Equation (A.10) contains the pre-collision velocities (v′′
1 ,v

′′
2 ) and the after-

collision velocity v1. Considering the velocities before and after the collision
are related as “(v′′

1 ,v
′′
2 ) → (v1,v2)” and “(v1,v2) → (v′

1,v
′
2), ” we can replace

Eq. (A.10) to

σ2

∫
d3v1d

3v2dk
2S(k · v12)f (2)(r1,v1; r1 − σk,v2; t)ψ(v′

1). (A.11)

Thus, we obtain∫
d3v1ψ(v1)JE [r1,v1|f(t)]

= σ2

∫
d3v1d

3v2d
2kS(k · v12)f (2)(r1,v1; r1 − σk,v2; t)(ψ(v′

1) − ψ(v1)).

(A.12)

We can symmetrize Eq. (A.12) in terms of integration variables,∫
d3v1ψ(v1)JE [r1,v1|f(t)]

=
σ2

2

∫
d3v1d

3v2d
2k{S(k · v12)f (2)(r1,v1; r1 − σk,v2; t)(ψ(v′

1) − ψ(v1))

+S(−k · v12)f (2)(r1,v2; r1 − σk,v1; t)(ψ(v′
2) − ψ(v2))}

=
σ2

2

∫
d3v1d

3v2d
2k{S(k · v12)f (2)(r1,v1; r1 − σk,v2; t)(ψ(v′

1) − ψ(v1))

+S(−k · v12)f (2)(r1 − σk,v1; r1,v2; t)(ψ(v′
2) − ψ(v2))} (A.13)

=
σ2

2

∫
d3v1d

3v2d
2k{S(k · v12)f (2)(r1,v1; r1 − σk,v2; t)(ψ(v′

1) − ψ(v1))

+S(k · v12)f (2)(r1 + σk,v1; r1,v2; t)(ψ(v′
2) − ψ(v2))}. (A.14)
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We used the property of two-body distribution function f (2)(r1,v1; r2,v2; t) =
f (2)(r2,v2; r1,v1; t) in Eq. (A.13) and changed as k → −k in the second term
in Eq. (A.14). We use two identities:

f (2)(r1,v1; r1 − σk,v2; t) − f (2)(r1 + σk,v1; r1,v2; t)

=
∫ 1

0

dλ
∂

∂λ
f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t) (A.15)

∂

∂λ
f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t)

= −σkα
∂

∂x1α
f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t), (A.16)

for the first term in Eq. (A.14). Then,∫
d3v1ψ(v1)JE [r1,v1|f(t)]

=
σ2

2

∫
d3v1d

3v2d
2kS(k · v12){f (2)(r1 + σk,v1; r1,v2; t)(ψ(v′

1) − ψ(v1))

+f (2)(r1 + σk,v1; r1,v2; t)(ψ(v′
2) − ψ(v2))

−σkα
∂

∂x1α
f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t)(ψ(v′

1) − ψ(v1))}(A.17)

=
σ2

2

∫
d3v1d

3v2d
2kS(k · v12){f (2)(r1 + σk,v1; r1,v2; t)∆ψ

−σkα
∂

∂x1α
f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t)(ψ(v′

1) − ψ(v1))}(A.18)

= I(ψ) +
σ3

2
∂

∂x1α

∫
d3v1d

3v2d
2kS(k · v12)kα∫ 1

0

dλf (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t)(ψ(v′
1) − ψ(v1)). (A.19)

By using the similar symmetrization

The second term in Eq. (A.19) (A.20)

= −σ
3

4
∂

∂x1α

∫
d3v1d

3v2d
2k

∫ 1

0

dλS(k · v12)kα

{f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t)(ψ(v′
1) − ψ(v1))

+f (2)(r1 + σk(1 − λ),v2; r1 − λσk,v1; t)(ψ(v′
2) − ψ(v2))} (A.21)

= −σ
3

4
∂

∂x1α

∫
d3v1d

3v2d
2k

∫ 1

0

dλS(k · v12)kα

{f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t)(ψ(v′
1) − ψ(v1))

+f (2)(r1 − λσk,v1; r1 + σk(1 − λ),v2; t)(ψ(v′
2) − ψ(v2))} (A.22)
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= −σ
3

4
∂

∂x1α

∫
d3v1d

3v2d
2k

∫ 1

0

dλS(k · v12)kα

{f (2)(r1 + σk(1 − λ),v1; r1 − λσk,v2; t)∆′ψ, (A.23)

we obtain Eq. (A.3).

A.2 Derivation of the hydrodynamical equations

Let us derive hydrodynamical equations

(∂t + v̄β∂β)n = −n∂β v̄β (A.24)

(∂t + v̄β∂β)v̄α = − 1
mn

∂βσαβ (A.25)

(∂t + v̄β∂β)Tg = − 2
3n

{∂βqβ + (∂β v̄α)σαβ} − ζTg, (A.26)

by substituting ψ = 1, v1α,v2
1 in Eq. (A.5). Eq. (A.24) is trivial. ∆ψ and ∆′ψ

are described as

∆′v1α = (1 + e)g21kα (A.27)
∆v1α = 0 (A.28)
∆′v2

1 = 2(1 + e)g21kαV12α (A.29)

∆v2
1 = (1 + e)g21{

1 + e

2
g21kαkα − v21αkα} (A.30)

= − (1 − e2)
2

g2
21, (A.31)

with V12α ≡ (v1α + v2α)/2. By using Eq. (A.24),

∂tnv̄α + ∂β〈v1αv1α〉 = v̄α∂tn+ n∂tv̄α + ∂β(nv̄αv̄β +
σk

αβ

m
) (A.32)

= n(∂t + v̄β∂β)v̄α +
1
m
∂βσ

k
αβ . (A.33)

The expression for the contact stress is directly obtained from the definition of
Jc. Thus, Eq. (A.25) is obtained. From

Jc
β(mv2

1) =
σ3m

4

∫
d3v1d

3v2d
2kS(g12)kβ∆′v2

αf
(2) (A.34)

=
σ3m

4

∫
d3v1d

3v2d
2kΘ(g12)2(1 + e)g2

12kαkβV12αf
(2) (A.35)

=
σ3m

4

∫
d3v1d

3v2d
2kΘ(g12)2(1 + e)g2

12(v̄α + Ṽ12α)kαkβf
(2)

= 2v̄ασ
c
αβ + 2qc

β , (A.36)
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and

Jk
β (mv2

1) = 〈mv1βv2
1〉 (A.37)

= v̄β{mnv̄2 + 3nTg} + 2v̄ασ
k
αβ + 2qk

β , (A.38)

we obtain

Jk
β (mv2

1) + Jc
β(mv2

1) = v̄β{mnv̄2 + nTα} + 2v̄ασαβ + 2qβ , (A.39)

with heat flux qα ≡ qk
α +qc

α and the kinetic contribution qk
α ≡ m〈u2

1u1α〉/2. And
the cooling rate ζα would be

ζ = −I(mv2
1)

3nTg
. (A.40)

∂t{mnv̄2 + n3Tg} = (mv2 + 3Tg)∂tn+ 2mnv̄α∂tv̄α + n∂t3Tg (A.41)

= −(mv2 + 3Tg)
∑

β

v̄β∂βn− 2mnv̄α

∑
β

∂σαβ

∂xβ

−2mnv̄α

∑
β

v̄β∂β v̄α + n∂t3Tg (A.42)

From Eqs. (A.5)(A.39)(A.40) and (A.42), we obtain Eq. (A.26).
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Appendix B

Discrete Element Method
in detail

In this appendix, how to implement DEM is explained. We follow the notation
in Ref. [68]

B.1 Transformation of Coodinates

The positions, velocities and angular velocities of grains are described in the
Cartesian coordinate. To calculate the force between grains, the relative dis-
placements and relative velocities of them in normal and tangential directions,
which is obtained from their positions velocities and angular velocities, are nec-
essary. After the calculation of forces, those in normal and tangential directions
are transformed into those in Cartesian coordinate. Here, we explain how to
transform the relative velocities and displacements in Cartesian coordinate into
those in the normal and tangential directions, and vice versa.

The transformation matrixR(φ̂, θ̂) of basis from Cartesian coordinate (x̂, ŷ, ẑ)
to the spherical coordinate (r̂, θ̂, φ̂) can be written as,

R(φ̂, θ̂) =

 cos φ̂ − sin φ̂ 0
sin φ̂ cos φ̂ 0

0 0 1

 cos θ̂ 0 − sin θ̂
0 1 0

sin θ̂ 0 cos θ̂

 (B.1)

=

 cos φ̂ cos θ̂ − sin φ̂ cos φ̂ sin θ̂
sin φ̂ cos θ̂ cos φ̂ sin φ̂ sin θ̂
− sin θ̂ 0 cos θ̂

 . (B.2)

i.e. basis vectors in spherical coordinate er, eθ and eφ and those in Cartesian
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coordinate ex, ey and ez are related as

eθ = R(φ̂, θ̂)ex (B.3)

eφ = R(φ̂, θ̂)ey (B.4)

er = R(φ̂, θ̂)ez (B.5)

For an arbitrary vector A, Ax̂

Aŷ

Aẑ

 = Axex +Ayey +Azez (B.6)

= Aθeθ +Aφeφ +Arer (B.7)

= AθR(φ̂, θ̂)ex +AφR(φ̂, θ̂)ey +ArR(φ̂, θ̂)ez (B.8)

= R(φ̂, θ̂)

 Aθ̂
Aφ̂

Ar̂

 (B.9)

holds. Then, by using R(φ̂, θ̂)Rt(φ̂, θ̂) = 1 with identity matrix 1, A would be
transformed via  Aθ̂

Aφ̂

Ar̂

 = Rt(φ̂, θ̂)

 Ax̂

Aŷ

Aẑ

 , (B.10)

where Rt denotes the transposed matrix of R.
On the contact point of grains, by using the transformation rule Eq. (B.10),

the contribution of the rotation of grains to the velocity is

ωi ×
σ

2
er =

σ

2
(ωrer + ωθeθ + ωφeφ) × er (B.11)

=
σ

2

 ωφ

−ωθ

0

 (B.12)

=
σ

2

 −ωx sin φ̂+ ωy cos φ̂
−(ωx cos θ̂ cos φ̂+ ωy cos θ̂ sin φ̂− ωz sin θ̂)

0

 (B.13)

=
σ

2
L(φ̂, θ̂)

 ωx

ωy

ωz

 , (B.14)

where the new matrix L(φ̂, θ̂) is introduced:

L(φ̂, θ̂) ≡

 − sin φ̂ cos φ̂ 0
− cos θ̂ cos φ̂ cos θ̂ sin φ̂ sin θ̂

0 0 0

 . (B.15)
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Following the similar calculation, the moment Mij and Fij in the spherical
coordinate are related via M ij

x

M ij
y

M ij
z

 =
σ

2
Lt

 F ij
θ

F ij
φ

F ij
r

 . (B.16)

The transformation rule Eq. (B.10) and (B.16) are adopted with cos θ̂ = (zj −
zi)/rij , sin θ̂ = r

(z)
ij /rij , cos θ̂ = (xj − xi)/r

(z)
ij , sin θ̂ = (yj − yi)/r

(z)
ij and r

(z)
ij ≡√

(xj − xi)2 + (yj − yi)2, where, in the case of, r(z)
ij = 0, we choose θ̂ = 0 for

zj − zi > 0 and θ̂ = π for zj − zi ≤ 0. Thus, the relative displacement on the
contact point t(ut, us, un) would be described as uij

t

uij
s

uij
n

 = Rt(φ̂, θ̂)

 ∆xij

∆yij

∆zij

+
σ

2
L(φ̂, θ̂)

 ∆Ψij
x

∆Ψij
y

∆Ψij
z

 . (B.17)

After the calculation of the force, the inverse transformation is performed for
(F ij

x , F
ij
y , F

ij
z ):  F ij

x

F ij
y

F ij
z

 = R(φ̂, θ̂)

 F ij
t

F ij
s

F ij
n

 (B.18)

to integrate EoM in Cartesian coordinate.
For two-dimensional case, since zj − zi = 0, we choose cos θ̂ = 0, sin θ̂ =

1, cos φ̂ = (xj−xi)/r
(z)
ij and sin φ̂ = (yj−yi)/r

(z)
ij for matrix R(φ̂, θ̂) and L(φ̂, θ̂).

B.2 Time Integration of Equations of Motion

We adopt the second-order Adams-Bashforth method for the time integration
with the time interval ∆t = 0.02tc. We solve EoMs for i th particle

mv̇iα = F i
α (B.19)

Iω̇iα = M i
α, (B.20)

where F i
α ≡

∑
j F

ij
α and M i

α ≡ M ij
α are introduced. After the time interval

t→ t+ ∆t, viα(t+ ∆t), ωiα(t+ ∆t), xiα(t+ ∆t) and φiα(t+ ∆t) are described
as

viα(t+ ∆t) = viα(t) +
∆t
2m

(3Fiα(t) − Fiα(t− ∆t)) (B.21)

ωiα(t+ ∆t) = ωiα(t) +
∆t
2I

(3Miα(t) −Miα(t− ∆t)) (B.22)

xiα(t+ ∆t) = xiα(t) +
∆t
2

(viα(t+ ∆t) + viα(t)) (B.23)

φiα(t+ ∆t) = φiα(t) +
∆t
2

(ωiα(t+ ∆t) + ωiα(t)) (B.24)
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It should be noted that ∆t(3Fiα(t)−Fiα(t−∆t))/2m ' ∆tFiα(t)/m+∆t2Ḟiα(t)/2m+
O(∆t3) and ∆t(3Miα(t) −Miα(t − ∆t))/2I ' ∆tMiα(t)/I + ∆t2Ṁiα(t)/2I +
O(∆t3) hold. Thus, by adopting this method, the ∆t2 accuracy is promised.

B.3 Event-Driven algorithm for collisions of grains

Event-Driven algorithms are sometimes used, because they are efficient. ED al-
gorithms contain following steps. First, from the data of positions and velocities
of grains, all possible interval in which two grains collide and their minimum is
chosen as the time step ∆t. Secondly, the chosen two grains collide and their
velocities are converted into new ones under the collision rule and other non-
collision grains move freely at their respective velocities. Then the next collision
pair is chosen.

Actually the ED algorithm is more efficient than DEM. However, because
the ED algorithms are oversimplified procedures, there are several problems in
them. The superiority of the DEM would be followings. The DEM can be used
even for dense systems above the jamming point, while ED algorithm simula-
tion cannot reach the jamming point. We also indicate that the primitive ED
algorithms encounter the inelastic collapse, though it can be avoided by intro-
ducing velocity-dependent restitution coefficient to the ED algorithms [164]. In
contrast, DEM has an advantage that it is free from the inelastic collapse and
we can easily include the effect of friction and rotation of grains. For these
reasons, we adopt DEM.
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Appendix C

How to calculate the local
stress tensor

In this appendix, we show how to calculate the stress tensor locally, following
Ref. [167,168].

C.1 Derivation of the microscopic description of
the stress tensor

Firstly, we derive the microscopic definition of the stress tensor. Let us write
the density n(x, t) and the velocity field v̄α(x, t) in terms of the delta function:

n(x, t) =
∑

i

δ(ri(t) − x) (C.1)

nv̄α(x, t) =
∑

i

viαδ(ri(t) − x). (C.2)

The continuity equations would be

∂n

∂t
+ v̄α

∂n

∂xα
= −n∂v̄α

∂xα
, (C.3)

and

n
∂v̄α

∂t
=

∂nv̄α

∂t
− v̄α

∂n

∂t
(C.4)

=
∑

i

(viαẋ · ∇δ(ri − x)) +
∑

i

v̇iαδ(ri − x)

+v̄αv̄β
∂n

∂xβ
+ nv̄α

∂v̄β

∂xβ
(C.5)

= − ∂

∂xβ

∑
i

{viαviβδ(ri − x)} +
∑

i

v̇iαδ(ri − x)
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+v̄αv̄β
∂n

∂xβ
+ nv̄α

∂v̄β

∂xβ
(C.6)

= − ∂

∂xβ

∑
i

(uiαuiβδ(ri − x)) +
∑

i

v̇iαδ(ri − x) (C.7)

= − 1
m

(
∂σk

αβ

∂xβ
+ S

)
, (C.8)

where the kinetic contribution of the stress tensor σk
αβ and the interaction

potential-contribution S are introduced as

σk
αβ ≡

∑
i

muiαuiβδ(ri − x) (C.9)

S ≡
∑

i

mv̇iαδ(ri − x) (C.10)

We derive the explicit expression for S in the followings. By using EoMs mv̇iα =
fiα =

∑
j F

ij
α ,

S =
∑

i

Fiαδ(ri(t) − x) (C.11)

=
∑
ij

F ij
α δ(ri(t) − x) (C.12)

=
∑
i<j

F ij
α δ(ri(t) − x) +

∑
j<i

f ij
α δ(ri(t) − x) (C.13)

=
∑
i<j

F ij
α {δ(ri(t) − x) − δ(rj(t) − x)} (C.14)

We use the identity for δ(ri(t) − x) − δ(rj(t) − x).

δ(ri − x) − δ(rj − x) = −
∫ 1

0

dλ
d

dλ
δ(ri − x + λ(rj − ri)) (C.15)

= − ∂

∂xβ
rijβ

∫ 1

0

dλδ(ri − x + λ(rj − ri)).(C.16)

Substituting Eq. (C.16) into Eq. (C.14), we obtain

S = −
∑
i<j

F ij
α

∂

∂xβ
rijβ

∫ 1

0

dλδ(ri − x + λ(rj − ri)) (C.17)

= −
∂σc

αβ

∂xβ
, (C.18)

where we define the potential-contribution of the stress tensor, which we call
the contact stress,

σc
αβ ≡

∑
i<j

F ij
α rijβ

∫ 1

0

dλδ(ri − x + λ(rj − ri)) (C.19)
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In summary, the microscopic definition of the kinetic and contact stress are

σk
αβ(x, t) =

∑
i

muiαuiβδ(ri − x) (C.20)

σc
αβ(x, t) =

∑
i,j

1
2
F ij

α rijβ

∫ 1

0

dλδ(ri − x + λ(rj − ri)). (C.21)

C.2 Derivation the local stress tensor

From here, we show how to calculate Eqs. (C.20) and (C.21) in the local mesh
whose volume is |ω|. For simplicity, we consider one-dimensional case z < z′ <
z + ∆z, where the extension toward 2D, 3D or several coordinate cases would
be straightforward. We introduce local σ̄k and σ̄c as

σ̄k
αβ ≡ 1

|ω|

∫
x∈ω

σk
αβdx (C.22)

σ̄c
αβ ≡ 1

|ω|

∫
x∈ω

σc
αβdx. (C.23)

The kinetic part can be calculated easily:

σ̄k
αβ =

1
∆z

∑
z<riz<z+∆z

muiαuiβ . (C.24)

However, the calculation for σ̄c
αβ in non-trivial, in the case that the interaction

between i and j cross the different mesh. We use the Heaviside functions for
integration:

1
|ω|

∫
dx

∫
dy

∫ z+∆z

z

dz′ · · · =
1
|ω|

∫
dx

∫
dy

∫
dz′Θ(z′−z)Θ(z+∆z−z′) · · · .

(C.25)

σ̄c
αβ =

1
|ω|

∫
dxdy

∫
dz′Θ(z′ − z)Θ(z + ∆z − z′)σc

αβ (C.26)

=
1

∆z

∑
i,j

1
2
F ij

α rijβA(riz, rjz, z), (C.27)

where we define

A(riz, rjz, z) ≡
∫
dz′Θ(z′ − z)Θ(z + ∆z − z′)

∫ 1

0

dλδ(riz − z + λ(rjz − riz))

=
∫
dz′Θ(z′ − z)Θ(z + ∆z − z′)

∫ rjz

riz

dλ̃

rjz − riz
δ(λ̃− z) (C.28)

=
1

rjz − riz

∫ rjz

riz

dλ̃Θ(λ̃− z)Θ(z + ∆z − λ̃). (C.29)
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The factor A(riz, rjz, z) denotes the ratio of the overlap between the distance
toward the mesh boundary from riz and the interaction length rjz − riz. For
example, if i th and j th particles are in the same mesh z < riz, rjz < z + ∆z,
A(riz, rjz, z) = 1. However, if they are in the different mesh z < riz < z+∆z <
rjz,

A(riz, rjz, z) =
z + ∆z − riz
rjz − riz

. (C.30)

In Fig. (C.1), we show the schematic picture for the calculation of A in the

i

j

i

j

(i) (ii)

Figure C.1: Schematic picture for the calculation of A in the cylindrical coor-
dinate (i) and 2D Cartesian coordinate (ii). A denotes the ratio of area of the
sky-colored region to that of the region enclosed by the red dashed line.

cylindrical coordinate (i) and 2D Cartesian coordinate (ii). A denotes the ratio
of area of the sky-colored region to that of the region enclosed by the red dashed
line. In general, we write

σ̄k
αβ =

1
|ω|
∑
i∈ω

muiαuiβ (C.31)

σ̄c
αβ =

1
|ω|

∑
i,j∈ω

1
2
F ij

α rijβA(ri, rj , r), (C.32)

where we define the general form of A

A(ri, rj , r) ≡ 1
Aij

∫ rjx

rix

dλxΘ(λx − x)Θ(x+ ∆x− λx)

×
∫ rjy

riy

dλyΘ(λy − y)Θ(y + ∆y − λy)

×
∫ rjz

riz

dλzΘ(λz − z)Θ(z + ∆z − λz), (C.33)

with Aij ≡ (rjx − rix)(rjy − riy)(rjz − riz). We analyze the stress tensor σαβ =
σ̄k

αβ + σ̄c
αβ locally by using the description, using Eqs. (C.31), (C.32) and (C.33)
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Appendix D

Analysis on a shear stress
vs strain rate plane in 3D

In this Appendix, we try to estimate the shear viscosity data on a shear stress
σrz vs strain rate Drz plane. Data points for σrz and Drz in the each mesh for
frictional case with φ̃0 ≡ φ0/φfcc = 0.90, where φ0 is the volume fraction before
the impact and and φfcc is that for fcc crystals, are plotted(Fig. D. 1). The point
for the smallest Drz and for the smallest σrz denote that for r/Rtar = 0.1 and
r/Rtar = 0.9 with the target radius Rtar, respectively. Although from fitting a
line to three other points, we may estimate the shear viscosity, but the estimated
value is negative. We have verified that this tendency is insensitive to the choice
of a specific φ̃0.

The negative viscosity, which is totally unphysical, may be the consequence
of the local variation of the volume fraction φ and the granular temperature
Tg between each mesh. The profiles of φ and Tg are shown in Fig. D.2. In a
usual setup, when we estimate the shear viscosity on a σrz vs Drz plane, σrz

and Drz are not the local quantities, but the bulk quantities. Thus, φ and Tg

are homogeneous and Drz can be controlled [137]. However, in our setup with
fixing φ and Tg, Drz cannot be controlled.

Judging from non-uniformity for volume fraction and granular temperature,
we do not adopt the viscosity evaluated on the stress-strain rate plane, but
adopt the local viscosity as explained in the text.
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Figure D.1: σrz and Drz for frictional case with φ̃0 = 0.90 are plotted. The
point for the smallest Drz and for the smallest σrz denote that for r = ∆r/2
and r = 5∆r/2, respectively. By fitting a line to three other points, negative
shear viscosity may be estimated.
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Figure D.2: The profile of the granular temperature and volume fraction. Red
points and blue asterisks denote Tg and φ for the corresponding mesh, respec-
tively.
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Appendix E

On artificial burst-like flows
in 2D

In this appendix, we comment the artificial burst-like flow in 2D, which appears
in the case of large µp with softer grains than in the text. After the impact
of jets composed of softer grains with large µp, because large tangential force
can be accumulated before the slip of a grain, the burst occurs, when a grain
slips. In Fig.E.1, we show the time evolutions of Tg at −∆y < y < 0 in (a) layer
for frictionless and µp = 0.2 case (i) and µp = 1.0 case for several stiffness (ii),
where Tg for the frictionless case and µp = 0.2 case reaches the small steady
values, while Tg raise many times after the impact for µp = 1.0 with large tc
cases, due to the slip events. As tc becomes smaller, the burst-like flows are
suppressed. Thus, we use harder grains for large µp case. Though there are
a few small raises of Tg for the frictionless case, they are out of our averaging
time.
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Figure E.1: The time evolution of Tg at −∆y < y < 0 in (a) layer for frictionless
and µp = 0.2 case (i) and µp = 1.0 case for several stiffness (ii). As tc becomes
smaller, the burst-like flows are suppressed.
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