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3.1.1 Itô type stochastic integral . . . . . . . . . . . . . . . . . 22
3.1.2 Stratonovich type stochastic integral . . . . . . . . . . . . 22

3.2 Stochastic differential equation and master equation . . . . . . . 23
3.3 Application to physical systems . . . . . . . . . . . . . . . . . . . 26

3.3.1 Langevin equation driven by a Gaussian noise . . . . . . . 26
3.3.2 Langevin equation driven by non-Gaussian noises . . . . . 27

3.4 System size expansion method . . . . . . . . . . . . . . . . . . . 28

4



3.4.1 van Kampen’s system size expansion . . . . . . . . . . . . 28
3.4.2 Generalized system size expansion . . . . . . . . . . . . . 29

4 Stochastic Energetics 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Basic relations for stochastic energetics . . . . . . . . . . . . . . . 31
4.3 Attainability of Carnot’s efficiency for a Brownian engine . . . . 34
4.4 Finite time engine for stochastic energetics . . . . . . . . . . . . 37

5 Adiabatic piston problem under nonlinear friction 38
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Fluctuating motion of adiabatic piston under dry friction . . . . 42
5.4 Roles of nonlinearity of sliding friction . . . . . . . . . . . . . . . 45
5.5 Fluctuation theorems under dry friction . . . . . . . . . . . . . . 47
5.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . 48

6 Non-equilibrium Brownian motion as a non-equilibrium probe 50
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Theory on a frictionless granular rotor . . . . . . . . . . . . . . . 51
6.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Theoretical starting point . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Granular Rotor under Viscous Friction . . . . . . . . . . . . . . . 56

6.5.1 Analytic formula for PDF of the rotor . . . . . . . . . . . 56
6.5.2 Forward problem for viscous rotor . . . . . . . . . . . . . 57
6.5.3 Inverse problem for granular gas . . . . . . . . . . . . . . 57

6.6 Position dependence of the rotor . . . . . . . . . . . . . . . . . . 58
6.7 Granular Rotor under Dry Friction . . . . . . . . . . . . . . . . . 59

6.7.1 Analytic formula for PDF of the rotor . . . . . . . . . . . 59
6.7.2 Forward problem for dry frictional rotor . . . . . . . . . . 60

6.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . 61

7 Efficiency at maximum power output for a passive piston 62
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Stochastic mean field model . . . . . . . . . . . . . . . . . . . . . 65
7.4 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.1 Dilute case . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4.2 Moderately dense case . . . . . . . . . . . . . . . . . . . . 70

7.5 Existence of Maximum Power and its Efficiency . . . . . . . . . . 70
7.5.1 Dilute case . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.5.2 Moderately dense case . . . . . . . . . . . . . . . . . . . . 74

7.6 Linearly irreversible thermodynamics . . . . . . . . . . . . . . . . 75
7.6.1 Dilute case . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.6.2 Moderately dense case . . . . . . . . . . . . . . . . . . . . 78

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5



7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Discussion and Summary 82

A Derivation of fluctuation relation under dry friction 84

B Benchmark Test for Simulation 87

C Detailed calculation for a viscous frictional rotor 89
C.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
C.2 Detailed procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.2.1 Forward problem . . . . . . . . . . . . . . . . . . . . . . . 91
C.2.2 Inverse estimation problem . . . . . . . . . . . . . . . . . 91

D Detailed calculation for a dry frictional rotor 93
D.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
D.2 Detailed procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 94

E Kinetic theory for hard core gases 96
E.1 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 96
E.2 BBGKY hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 98
E.3 Extension of Boltzmann equation . . . . . . . . . . . . . . . . . . 100
E.4 Kinetic Theory for Granular Flow . . . . . . . . . . . . . . . . . 101
E.5 Transport coefficients for inelastic hard core gases . . . . . . . . . 105

F Velocity auto-correlation 107

G On the definition of work for a passive engine 109

H Effect of side-wall friction on a passive engine 112

6



List of publications submitted for the require-
ment of the thesis

• Chapter 5:
Tomohiko G. Sano and H. Hayakawa, “Roles of dry friction in the fluctu-
ating motion of an adiabatic piston,”
Physical Review E 89, 032104 (2014).

• Chapter 6:
Tomohiko G. Sano, K. Kanazawa and H. Hayakawa,“Granular rotor as
a probe for a non-equilibrium bath,” arXiv:1511.08594v1, submitted to
Physical Review E

• Chapter 7:
Tomohiko G. Sano and H. Hayakawa, “Efficiency at maximum power out-
put for a passive engine,” arXiv:1412.4468v2, resubmitted to Physical Re-
view E

The other publications by the author

In addition, the author has published the following four papers in the peer-
reviewed journals and one peer-reviewed proceedings for the international con-
ference:

• Tomohiko G. Sano and Hisao Hayakawa, “Simulation of granular jets:
Is granular flow really a perfect fluid?,” Physical Review E 86, 041308
(2012).

• Tomohiko G. Sano and Hisao Hayakawa, “Jet-induced jammed states of
granular jet impacts,” Progress of Theoretical and Experimental Physics,
(2013) 103J02.

• Kiyoshi Kanazawa, Tomohiko G. Sano, Takahiro Sagawa, and Hisao Hayakawa,
“Minimal Model of Stochastic Athermal Systems: Origin of Non-Gaussian
Noise,” Physical Review Letters 114, 090601 (2015)

• Kiyoshi Kanazawa, Tomohiko G. Sano, Takahiro Sagawa, and Hisao Hayakawa,
“Asymptotic Derivation of Langevin-like Equation with Non-Gaussian
Noise and Its Analytical Solution,” Journal of Statistical Physics 160,
1294 (2015).

• Tomohiko G. Sano and Hisao Hayakawa, “Numerical analysis of impact
processes of granular jets,” AIP Conference Proceedings 1542, 622 (2013),
Powders and Grains 2013, Sydney, Australia

7



Abstract

The fluctuating motion of a tracer attached to non-equilibrium environments is
theoretically studied as the rectifier. We clarify the following three properties
of the fluctuating motion under non-equilibrium conditions in this thesis.

At first, we consider the motion of an adiabatic piston under sliding friction,
which is located between two ideal gases in equilibrium characterized by two
different temperatures and densities. In the absence of the sliding friction, the
direction of the piston motion is known to be determined from the difference
of temperature of two gases. However, if the sliding friction exists, we show
that the direction of motion depends on the amplitude of the friction, and
nonlinearity of the friction. Thus, the direction of momentum flux rectified
from the fluctuation piston is not determined by temperature difference if the
piston is attached to non-equilibrium environments. The fluctuation theorem
under dry friction, which deviates from the conventional fluctuation theorem, is
derived.

At second, the dynamics of a rotor under viscous or dry friction is investi-
gated as a non-equilibrium probe of a granular gas numerically and analytically.
To demonstrate a role of the rotor as a probe for a non-equilibrium bath, we
perform the molecular dynamics (MD) simulation of the rotor under viscous or
dry friction surrounded by a steady granular gas under gravity. We theoretically
derive a one-to-one map between the velocity distribution function (VDF) for
the granular gas and the angular one for the rotor. With the aid of the MD
simulation, we demonstrate that the one-to-one map works well to infer the
local VDF of the granular gas from the angular one of the rotor, and vice versa.

At third, we consider the cycle containing heating and cooling processes
for an elastic hard core gas enclosed by a fluctuating piston. We study the effi-
ciency at maximum power output (MP) for a passive engine without mechanical
controls between two reservoirs. We enclose a hard core gas partitioned by a
massive piston in a temperature-controlled container and theoretically analyze
the efficiency at MP for heating and cooling protocols without controlling the
pressure acting on the piston from outside.



Chapter 1

Introduction

1.1 Fluctuating motion under non-equilibrium
situations

Studies on fluctuating motion have a history of nearly 200 years. An English
botanist, Brown found the random motion of pollen grains on water, through
his observation through a microscope in 1827 [1]. Although it is fascinating to
observe the random motion of inactive grains as if they are organisms, the quan-
titative theory did not exist in the 19th century. In 1905, Einstein proposed the
theory on the Brownian motion using a stochastic theory [2]. Einstein’s work
has greatly influenced the development of statistical mechanics, molecular ki-
netic theory and stochastic processes in the 20th century. Theory of Brownian
motion has been developed by many researchers, including Langevin, Smolu-
chowski, Ornstein, and Uhlenbeck [3–9].

Equilibrium thermodynamics prohibits extracting work from a single en-
vironment without any energetic cost. However, one can expect to extract
work from an isotropic thermal fluctuating environment such as the Feynman-
Smoluchowski ratchet [10, 11]. Note that the ratchet has been originally pro-
posed by Smoluchowski [10]. The symmetric vanes are connected to an asym-
metric wheel with a pawl to rotate in one direction (Fig. 1.1). We call the whole
system including vanes and the pawl “the ratchet.” If the ratchet is placed in
thermal equilibrium environment, we might expect to rectify the work from the
single thermal equilibrium environment, which is in contradiction with the sec-
ond law of equilibrium thermodynamics. To solve this contradiction, thermal
fluctuation plays a key role. When the vanes are attached to the thermal equi-
librium environment, they thermally fluctuate. As a result, the pawl thermally
fluctuates and it does not work correctly. Thus, the ratchet cannot extract any
work from the fluctuation in the single thermal equilibrium environment [10,11].
See Ref. [12] for the critical analysis of the ratchet as engines.

Nowadays, non-equilibrium Feynman-Smoluchowski ratchet is experimen-
tally realized in a granular gas environment [13], where the asymmetric vanes
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Figure 1.1: A schematic figure of the Feynman ratchet. The symmetric vanes
are connected to the asymmetric wheel, where the pawl is placed to force the
wheel to rotate in one direction. As is well known, no work can be rectified.

having coated the surfaces of different restitution coefficients are placed in the
granular gas (Fig. 1.2). The difference of restitution coefficients corresponds
to the pawl in the original Feynman-Smoluchowski ratchet, and thus, the vanes
can rotate in one direction. It is essential that the ratchet is attached on a non-
equilibrium environment. Because the kinetic energy of the granular gas is much
higher than the room temperature and the asymmetric vanes can be regarded
as the system attached to the zero-temperature environment, where thermal-
ization of the pawl can be ignored. The realization of such a non-equilibrium
Feynman-Smoluchowski ratchet has raised the natural question: what can we
rectify from the fluctuating motion under non-equilibrium? This is the question
addressed in this thesis.

The spirit of asking the previous question is as follows. Looking back the
early history of equilibrium thermodynamics in the middle of 19th century, we
should note that work of Carnot is remarkable [14]. Besides the discussion for
the identity of heat, Carnot is the first person who considered the extraction
of work from thermal equilibrium environments 1 and its maximum bound. In
this thesis, we consider the extraction of work from environments including
non-equilibrium ones.

1.2 Dry friction as a non-equilibrium environ-
ment

One of the typical couplings between the system and an environment is dry fric-
tion, when two solid bodies are in contact. Dry friction is ubiquitous throughout
nature from a biological surface to an atomic-scale surface [15–17]. Recent devel-
opments in experimental technique enable us to control small systems and non-

1Needless to say, real engines are not in thermal equilibrium exactly.
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Figure 1.2: Schematic figure of the Feynman ratchet in a granular gas. The
asymmetric vanes, whose surfaces are coated to have different restitution coef-
ficients, are placed in granular gas.

equilibrium systems, such as nano-scale systems, single colloidal systems, and
biological systems, to clarify their thermodynamic structures in detail [18–20].
One of the most important applications of manipulation techniques for small
systems is the design of nano-machines or sub-micron machines [21–23]. The
difficulty to realize efficient small machines is the existence of dry friction, be-
cause the dry friction wears down the small machines [24]. Thus, to control
systems under dry friction is indispensable to invent small machines. There are
many unavoidable obstacles which play central roles in small realistic systems,
such as dry friction, wear, adhesion, electrification, and so on [25–28]. Experi-
ments for macroscopic systems under dry friction reveal that the dry friction has
an important role to extract work from an equilibrium environment [29,30,32].
The motor interacting with its supporting axis via dry friction rotates even
in an equilibrium fluid. Recent studies on the Brownian motion under dry
friction clarify that the motion of particles is characterized by non-Gaussian
statistics [31,33–43].

Although dry friction plays essential roles in non-equilibrium transport [24–
28], the energetics for systems under dry friction has been elusive so far. For sys-
tems without dry friction, there exists the energetics in the Langevin description
so-called stochastic energetics [44–46], in which the first law of thermodynamics
holds at the level of single trajectory of a tracer particle. The original form of
stochastic energetics has been restricted to systems of a single particle driven by
a Gaussian white noise, while it is extended to those driven by a non-Gaussian
white noise by introducing the new stochastic products [47].

3



1.3 Fluctuating motion of a symmetric rotor

In the previous section, we have shown that the asymmetry of vanes induces
the directed motion. Then, we can ask a question: can we rectify useful quan-
tities from the fluctuating motion of a symmetric rotor? From the fluctuation-
dissipation relation (FDR), we expect that the fluctuation motion of symmetric
vanes is directly related to the temperature of a non-equilibrium environment.
Temperature is one of the most important quantities in equilibrium thermody-
namics [48, 49]. One can generalize the concept of temperature to characterize
various non-equilibrium systems. Although many authors have proposed non-
equilibrium temperatures, their validity has not been sufficiently clarified so
far [50–52]. Indeed, there are some reports that the effective temperatures in
non-equilibrium systems do not satisfy the fundamental laws of thermodynam-
ics, such as the zeroth law [53–57].

There are many attempts to introduce effective temperatures even for gran-
ular systems [58–61]. One of the most famous ones is the Edwards temperature,
which is associated with the compactivity and is mainly used for static ensem-
bles of granular particles [62–69]. Another well-known temperature is the kinetic
temperature or the granular temperature, which is the second-order cumulant
of the velocity distribution function (VDF) and is related to the kinetic energy
of granular particles [70–86]. The latter effective temperature is appropriate in
describing the granular flows even in the vicinity of jamming transition, whereas
we do not have the consensus of what temperature is useful for general setups of
granular systems [83–86]. Moreover, we have to take into account the effects of
higher-order cumulants explicitly to characterize granular assemblies, because
granular assemblies have non-Maxwellian nature of the VDF, i.e., the existence
of higher-order cumulants [33,57,87–89].

For local thermal equilibrium gases, the local temperature can be measured
through the observation of the motion of a Brownian tracer, because the sec-
ond cumulant of the VDF of the tracer is directly related to the temperature
according to the FDR. On the other hand, it is nontrivial whether we can infer
the distributions of non-equilibrium environments only observing the motion of
the tracer attached to environments such as granular gases [90, 91]. Kanazawa
et al. suggested that such a characterization is possible through the analysis of
a non-Gaussian Langevin equation [92,93], where an inverse estimation formula
is derived to infer the non-equilibrium granular VDF from the observation of
the tracer. Although the usefulness of the inverse formula has already been nu-
merically verified on the basis of the Boltzmann-Lorentz equation for spatially
homogeneous and isotropic granular gases [3,7,8,94–97], the model may not be
sufficiently realistic because inhomogeneity and anisotropy exist in real granular
gases such as vertically vibrated granular systems under gravity [88]. This im-
plies that more realistic formulation is necessary for experimental measurement
of high-order cumulants by observation of the tracer dynamics.
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1.4 Efficiency with finite power

Equilibrium thermodynamics reveals the relation between work and heat, and
the upper bound for extracted work from an arbitrary heat cycle [98, 99]. The
milestone of equilibrium thermodynamics is that thermodynamic efficiency for
any heat cycle between two reservoirs characterized by the temperatures TH and
TL (TH > TL) is bounded by the Carnot efficiency:

ηC ≡ 1− TL

TH
, (1.1)

achieved by a quasi-static operation [100]. There are many studies on the effi-
ciency of engines including both external and internal combustion engines. The
steam engines and steam turbines belong to the former category whose ideal
cycles are the Carnot cycle, the Stirling cycle, and so on [100, 101]. The diesel
and free-piston engines are examples of the latter, and their ideal cycles are the
Otto cycle, the Brayton cycle, and so on [102, 103]. It is also known that the
maximum efficiency for the ideal external combustion engines is ηC, while that
for the ideal internal ones is usually smaller than ηC. For a practical point of
view, an engine with ηC is useless, because its power is zero.

The extension of thermodynamics toward finite-time operations, so-called
finite time thermodynamics, has been investigated by many authors [104–129].
Chambadal and Novikov independently proposed, and later Curzon and Ahlborn
rediscovered that the efficiency at maximum power (MP) output is given by the
Chambadal-Novikov-Curzon-Ahlborn (CNCA) efficiency [104–109]:

ηCA ≡ 1−
√
TL

TH
. (1.2)

Recently it is found that Reitlinger originally proposed ηCA in 1929 [104, 105].
The validity of the CNCA efficiency near equilibrium has been justified through
the linear irreversible thermodynamics [111], molecular kinetics [112, 113] or
low-dissipation assumption [114]. It is believed that the CNCA efficiency is, in
general, only the efficiency at MP near equilibrium situations. Indeed, there are
many situations to exceed the CNCA efficiency in idealized setups [112,114,116].
Although there are several studies for finite time thermodynamics including
external and internal combustion engines or fluctuating heat engines [125–129],
they are mostly interested in force-controlled engines [112,113,115–118,121–126,
128,129], where a piston or a partitioning potential is controlled by an external
agent. On the other hand, the efficiency at MP for an engine without any
external force control, which we call a passive engine, has not been well-studied
so far.

1.5 The aim of this thesis

The aim of this thesis is to clarify the role of the fluctuating motion of the
tracer under non-equilibrium conditions as a rectifier. In this thesis, we study
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the motion of the tracer (piston or rotor) attached to no-equilibrium baths in
the following three setups: (i) an adiabatic piston under sliding friction, (ii) a
rotor in granular gases and (iii) a piston attached to a hard core gas under cyclic
heating and cooling operations. The aim of this thesis is to verify the properties
of a rectified quantity, such as work, from the observation of the tracer motion.

1.6 The organization of this thesis

This thesis is organized as follows: In Chapter 2, we review studies of finite time
thermodynamics including the early history of equilibrium thermodynamics. In
Chapter 3, basic relations, techniques, and definitions of stochastic calculus
including recent results used in this thesis are summarized, which would be use-
ful to readers. We review basic relations of the energetics on the basis of the
Langevin equation, i.e. stochastic energetics and the fluctuating engine in Chap-
ter 4. In Chapter 5, we study the fluctuating motion of an adiabatic piston un-
der the sliding friction, which is located between two equilibrium environments
characterized by two different temperatures and densities. The direction of the
piston motion is known to be determined from the difference of temperature
of two gases. However, if sliding friction exists, we show that the direction of
motion depends on the amplitude of the friction, and nonlinearity of the friction
if the piston is attached to non-equilibrium environments. We also derive the
fluctuation theorem under dry friction. In Chapter 6, the dynamics of a rotor
under viscous or dry friction is investigated as a non-equilibrium probe of a
granular gas numerically and analytically. To demonstrate a role of the rotor as
a probe for a non-equilibrium bath, we perform the molecular dynamics (MD)
simulation of the rotor under viscous or dry friction surrounded by a steady
granular gas under gravity. In Chapter 7, the efficiency at MP for a passive en-
gine without mechanical controls between two reservoirs is studied. We enclose
a hard core gas partitioned by a massive piston in a temperature-controlled
container and analyze the efficiency at MP for heating and cooling protocols
without controlling the pressure acting on the piston from outside. In Chapter
8, we conclude a thesis with some remarks. In Appendix A, we explain the
detailed derivation of the fluctuation relation under dry friction. In Appendix
B, we show the benchmark test of the simulation of the granular rotor. In Ap-
pendices C and D, we show both the detailed theoretical calculations and the
numerical procedure for the rotor under viscous and dry frictions, respectively.
In Appendix. E, we review the kinetic theory and the Boltzmann equation.
Transport coefficients for granular flow are also summarized in this appendix.
In Appendix. F, we discuss the velocity autocorrelation function for the pis-
ton. We discuss the definition of work for a passive engine in Appendix. G and
the effect of side-wall friction on the efficiency in Appendix H. Throughout this
thesis, variables with “ˆ” denote stochastic variables.
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Chapter 2

Finite time
thermodynamics

Abstract

In this chapter, we review equilibrium thermodynamics and finite time ther-
modynamics focusing on thermodynamic efficiency. In Sec. 2.1, we briefly
summarize historical achievements of equilibrium thermodynamics. In Sec. 2.2,
we classify heat engines and explain their ideal theoretical cycles. In Sec. 2.3,
we review the progress on the efficiency at MP for heat and chemical engines.

2.1 Equilibrium Thermodynamics

Equilibrium thermodynamics is one of the most established achievements in
classical physics. It is well known that many scientists struggled to establish
equilibrium thermodynamics. In Sec. 2.1.1, we briefly explain the early history
of equilibrium thermodynamics to see the important contribution by Carnot,
who brings the viewpoint of work into thermodynamics. We call thermody-
namics before Carnot’s work “thermology” to distinguish them. In Sec. 2.1.2,
we explain the Carnot theorem in a sophisticated manner on the basis of the
entropy function. In Sec. 2.1.3, the chemical version of the Carnot cycle is
explained.

2.1.1 Early History of Equilibrium Thermodynamics

In the late 18th century and the beginning of the 19th century, heat and tem-
perature are thought to be extensive and intensive quantities for caloric, re-
spectively. Today, they are well-established concepts: heat is a kind of energy
transfer, and temperature can be defined the efficiency of an ideal thermody-
namic cycle [14]. Let us briefly summarize the early history of equilibrium
thermodynamics, following the historical books written by Yamamoto [14].
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The modern view of nature starts from the mathematical positivism and
the mechanistic view of nature, where targets are abstracted to be geometrical
objects. Although such views of nature are not directly related to the beginning
of thermodynamics, Galileo is the first person to quantify the heat phenomena
as the volume change of the gas. One of the early significant discoveries in the
science of gases would be the existence of atmospheric pressure and vacuum,
through experiments for columns of mercury by Torricelli and Pascal, and the
demonstration by von Guericke, who invented a vacuum pump [130–132].

The discovery of atmospheric pressure and vacuum had been succeeded to
Boyle and Hooke, who examined the first qualitative law for gaseous physics,
known as Boyle’s law, though Boyle was interested in the “elasticity” of the
air. Boyle’s law states that the pressure of the gas is inversely proportional to
the volume. Hooke, who performed the experiments as an assistant of Boyle,
revisited Boyle’s law from the viewpoint of the elastic theory for spring. Boyle
and Hooke regard gas as a static object, e.g. elastic wool. Then, they regarded
its vibration as the heat. Their idea is not succeeded to the kinetic theory
by Maxwell and other people in the late 19th century. However, it should be
stressed that they came up with the idea that the motion (vibration) can be
transformed into heat [133].

The reason why the idea by Boyle and Hooke is not succeeded to the kinetic
theory is the strong influence of Newtonian mechanics. Newton showed that
the pressure of the gas is inversely proportional to the volume, if repulsive
force between gas particles is inversely proportional to their distance [134]. In
those days, people believed that the origin of the pressure is not the collision of
particles, but the repulsive force between static gas particles.

The origin of thermology is the proposal of materia ignis, which is the inert
substance playing a role of all of the thermal phenomena, by Boerhaave [135].
He assumed the existence of materia ignis. Franklin considered the conservation
and its equilibrium of materia ignis, as a principle, through the analogy between
electric and thermal phenomena. In 1774, de Lavoisier, who is known to be a
giant of chemistry, proposed caloric, which is the similar concept of materia
ignis. Then, the caloric theory had been popular in the late 18th century.

Besides the prosperity of thermology, Black indicated the difference between
temperature and heat introducing the concept of heat capacity [136]. Black
revisited the idea of equilibrium, not as the principle, but as the experimental
and empirical fact: the fact that two systems are in thermal equilibrium is
recognized by the observation of a thermometer. Emphasizing the important
role of a thermometer, he distinguished temperature from heat. Although Black
distinguished them, he avoided answering the question: what is heat? Because
the concept of heat capacity is consistent with the idea that the heat is a matter
(a calorific matter or a matter of heat), the heat had been thought as a static
matter yet.

de Lavoisier tried to formulate thermology more concretely. He and Laplace
formulated thermology at the level of mathematical physics. For example, they
introduced the conservation law for the caloric, which is in contrast to the first
law of thermodynamics [137]. Although Rumford, who is known as Sir Ben-
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jamin Thompson, experimentally showed that frictional heat is inexhaustible in
1798, where the heat produced by boring a cannon could boil water, his exper-
imental facts without any new theoretical support seemed to be too weak to
deny thermology [138].

Carnot is the first person to bring the viewpoint of work into thermology,
which gives the birth to the Carnot theorem and its corollaries [100]. It is
surprising that the work by Carnot was almost ignored by the community in
those days. Although Carnot presented his theory in 1824 and Clapeyron re-
formulated the work by Carnot in 1834, almost nobody mentioned his papers
until 1844. In 1848, at last, Thomson, who is known as Lord Kelvin, found and
spread papers by Carnot. Carnot proved that the maximum work obtained be-
tween two heat sources corresponds to the material-independent function called
the Carnot function, which is now called the Carnot efficiency. Clapeyron and
Thomson tried to identify the Carnot function experimentally, though their ac-
curacy were not sufficient. Right after the discovery of papers by Carnot, the
first law of thermodynamics was established by Mayer, Joule, Clausius, Clapey-
ron, Thomson.

2.1.2 Heat Engine

Here, let us introduce the modern proof of Carnot’s theorem [139]. We consider
a heat cycle which is connected with a hot and a cold system. Let Sν = Sν(Uν)
be the entropy for the engine SE, the hot system (H) SH, the cold system (L) SL,
external system Sex, and Uν(ν = E,H,L, and ex) is the internal energy of each
system. Sν = Sν(Uν) is assumed to be a concave function of Uν . We assume
that the external system is thermally insulated from H or L. Note that H and
L are not necessary reservoirs, and, therefore their internal energy can change.
During the cycle, the engine converts the energy gain QH from H to the work
W toward the external system and QL flows into L. After the cycle, the internal
energy for hot and cold reservoirs, respectively, changes as UH → UH −QH and
UL → UL + (QH −W ). Because the total entropy increases after the cycle, we
obtain the following inequality:

SE + SH(UH −QH) + SL(UL +QH −W ) + Sex + ∆Sex

≥ SE + SH(UH) + SL(UL) + Sex, (2.1)

where Sex represents the entropy change of the external system. It should be
noted that SE does not change after the cycle because the engine is assumed to
come back to the initial state. Equation (2.1) can be rewritten as

{SH(UH −QH)− SH(UH)}+ {SL(UL +QH −W )− SL(UL)}+ ∆Sex ≥ 0. (2.2)

Recalling the following inequality for an arbitrary concave function f(x):

(x− x0)f ′(x0 ± 0) ≥ f(x)− f(x0), (2.3)

Eq. (2.2) is reduced to

−QH

TH(UH)
+
QH −W
TL(UL)

+ ∆Sex ≥ 0. (2.4)
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Tν(Uν) ≡ (∂Sν/∂Uν)−1 has the meaning of temperatures follows. Because tem-
perature is a monotonic function of the internal energy, TH(UH) ≥ TH(UH−QH)
and TL(UL) ≤ TL(UL +QH−W ) hold. TH(UH) and TL(UL), respectively, means
the hottest and coldest temperatures for H and L during their contact to the
system. If H and L are reservoirs, i.e. their changes of the internal energy are
negligible, UH−QH ' UH and UL ' UL +QH−W . We write TH = TH(UH) and
TL = TL(UL) as abbreviation. Using Eq. (2.4), we obtain the inequality for the
efficiency ηQ→W ≡W/QH:

ηQ→W ≤ 1− TL

TH
+
TL∆Sex

QH
. (2.5)

Note that ∆Sex ≥ 0 and ∆Sex = 0 for a reversible work source. If ηQ→W

is realized for one system, the external work source can be replaced by the
reversible one with the identical efficiency ηQ→W . Therefore we can choose
∆Sex = 0 in Eq. (2.5), and the inequality becomes more strict. Thus, Carnot’s
theorem is proved:

ηQ→W ≤ 1− TL

TH
. (2.6)

Here, the equality is realized for a quasi-static operation, if H and L are reservoirs
and the temperature of the engine and that of the reservoir are the same when
they are attached.

2.1.3 Multi-component Chemical Engine

One can consider a chemical engine, where the work is extracted from particle
reservoirs. For example, living systems use adenosine triphosphate hydrolysis as
one of energy sources. Let us introduce the following general chemical reaction
[140] at temperature T as

n∑
i=1

νiMi 
 0, (2.7)

where νi and Mi represent the stoichiometric coefficient and the symbol for i th
component, respectively. Note that νi > 0 is a product and νi < 0 is a reactant
of the reaction. There are n = nr + np kinds of chemical substances, where
np products are produced from nr reactants. We consider an isothermal engine
consisting of n uptake or release processes and n expansion or compression
processes as discussed in Ref. [140]. The schematic figure is shown in Fig. 2.1.
The volume of the solution in the container Vcont is perfectly controlled by the
external agent through the pressure control from the outside. The container can
uptake or release the ith substance to the ith particle reservoir of the chemical
potential µ0

i through a semipermeable membrane. This configuration is similar
to the Van’t Hoff reaction box [141]. The change of the number of ith component
dNi is caused by the change due to the chemical reaction dN in

i and the exchange
from the reservoir dN ex

i :

dNi = dN in
i + dN ex

i . (2.8)
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In chemical thermodynamics, dN in
i is expressed in terms of the extent of reaction

ξ:
dN in

i = νidξ. (2.9)

Let µi < 0 and µ0
i < 0 be the chemical potential for i th component in the

container and that for the particle reservoir, respectively. It is convenient to
introduce the chemical affinity:

A0 ≡ −
∑

i

νiµ
0
i , (2.10)

which represents how far from the chemical equilibrium the reaction is, or equiv-
alently, the sum of the Gibbs free energy per a unit mol. We assume that the
affinity is positive A0 > 0, which means that the reaction proceeds in the direc-
tion that the amount of products increases.

Figure 2.1: The schematic figure of the chemical engine [140]. The container can
uptake or release the ith substance to the ith particle reservoir of the chemical
potential µ0

i through a semipermeable membrane. This configuration is similar
to the Van’t Hoff reaction box [141].

The protocol for the engine is the following 2n steps: Initially, we assume
µ1 = µ0

1. (1): By changing Vcont, the container absorbs (releases) 1st component.
(2): The volume of the solution Vcont is changed to satisfy the relation µ2 = µ0

2.
(3): · · · . (2i − 1): By changing Vcont, the container absorbs (releases) i th
component. (2i): The volume of the solution Vcont is changed to satisfy the
relation µi+1 = µ0

i+1. (2i + 1): · · · . (2n): The volume of the solution Vcont is
changed to satisfy the relation µ1 = µ0

1. For isothermal chemical engine, the
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efficiency ηchem is defined as

ηchem ≡ Wchem

G+
, (2.11)

Wchem ≡
n∑

i=1

µ0
i

∫ 2i

2i−1

dN ex
i , (2.12)

G+ ≡
∑
νi>0

µ0
i

∫ 2i

2i−1

dN ex
i . (2.13)

Using the relation
∮
dNi = 0 and Eqs. (2.8)-(2.10), we obtain the following

expressions:

Wchem = −
∑

i

νµ0
i

∮
dξ, (2.14)

G+ = −
∑
νi>0

νµ0
i

∮
dξ. (2.15)

Introducing the chemical affinities for products and reactants,

A0
+ ≡ −

∑
νi>0

νµ0
i , (2.16)

A0
− ≡

∑
νi<0

νµ0
i , (2.17)

the efficiency for the equilibrium chemical engine is expressed as the ratio of
chemical affinities for products and reactants:

ηchem =
A0

+ −A0
−

A0
+

= 1−
A0

−
A0

+

≡ ηCC, (2.18)

which we can called the chemical Carnot efficiency. We comment on the special
case with nr = 0, np = 1, ν1 > 0, where any reactions do not exist [142]. In
this case, because all molecules absorbed in the container are removed in the
quasi-static limit, the efficiency is apparently ηchem = 1.

2.2 Classification of engines and ideal theoreti-
cal cycles

In this section, we classify heat engines and explain their ideal theoretical cycles.
Heat engines are categorized into two types, external (Sec. 2.2.1) and internal
combustion engines (Sec. 2.2.2), in which the heat sources are prepared outside
and inside the engine, respectively. Although real engines are influenced by
friction or wear, idealized engines consisting of ideal gases and frictionless piston
are analyzed for the estimation of the maximum efficiency.
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2.2.1 External combustion engine

External combustion engines are the engines, where the working fluids inside the
container are heated or cooled by external heat sources. The merit of external
combustion engines is the broad utility. We can use any materials as heat sources
for an external combustion engine, while this is not true for internal combustion
engines. The demerit of the external combustion engine is the limitation of the
size. We cannot gain sufficient work from small external combustion engines.
Right after the industrial revolution, external combustion engines became pop-
ular because of its broad utility. At present, external combustion engines can
be found as thermal or nuclear power plants. For example, steam engines are
external combustion engines, because working fluid heated by an external heat
source rotates the turbine. The Carnot cycle and the Stirling cycle are exam-
ples of ideal theoretical cycles. Note that the maximum efficiencies for both the
Carnot and Stirling cycle are identical to ηC .

2.2.2 Internal combustion engine

Internal combustion engines are the engines, whose works are extracted by the
explosion or reaction of working fluids [103]. The name of internal combustion
engine comes from the fact that the source of work is inside the engine. We
usually pour the mixture of air and reactant into the container and collect their
products. To keep the inside of the container clean, we cannot choose arbi-
trary substances in contrast to external combustion engines. However, internal
combustion engines can work well, even if the size is small. Therefore, internal
combustion engines can be found in many places, e.g. the engine of motorcycles.
To discuss the efficiency of internal combustion engine, hydrodynamics or ther-
mal conduction of reactants and explosion processes of reactants are important.
However, we usually replace explosion processes by heating or cooling processes
to consider the efficiency for ideal theoretical cycles. The Otto cycle and the
Brayton cycle are typical examples. Note that the maximum efficiency for an
internal combustion engine is usually smaller than ηC .

2.3 Efficiency at Maximum Power Output

We have discussed the maximum efficiency of the engine up to the previous sec-
tion. Although the maximum efficiency derived in equilibrium thermodynamics
is general, the thermodynamic bound itself is practically useless when we dis-
cuss an actual engine. Indeed, the power of the quasi-static cycle, i.e. the work
per a unit time is zero, while the actual engine has the finite power. From the
practical point of view, we are interested in the efficiency at MP. The energetics
considering a finite-time cycle is now called finite time thermodynamics. In this
section, we review the recent progress on the finite time thermodynamics. In the
following, we discuss the efficiency for the engine, when the power is maximized.
In Sec. 2.3.1, we introduce the derivation of the CANA efficiency by Curzon and
Ahlborn in Ref. [109]. In Sec. 2.3.2, we derive the CNCA efficiency on the basis
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of the linearly irreversible thermodynamics [111]. In Sec. 2.3.3 and 2.3.4, we
discuss the efficiency at MP under nonlinear non-equilibrium situations on the
basis of the low-dissipation assumptions and the extended Onsager relations,
respectively. In Sec. 2.3.5, we derive the efficiency at MP for chemical engines
on the basis of the low-dissipation assumption.

2.3.1 Derivation by Curzon and Ahlborn

The most famous formula known as the efficiency at MP is the CNCA efficiency:

ηCA = 1−
√
TL

TH
. (2.19)

For the simplicity of the derivation by Curzon and Ahlborn [109] in 1975, ηCA

is sometimes called the CA efficiency, while Eq. (2.19) has already been derived
by Reitlinger in 1929 [104,105].

Let us derive Eq. (2.19) following the argument by Curzon and Ahlborn
[109]. Let T (w)

H and T
(w)
L be, respectively, the temperatures of the working flu-

ids when hot TH and cold TL reservoirs are attached. We assume that the heat
fluxes through the vessel containing the working fluid are proportional to the
temperature difference, i.e. the heat fluxes from TH and TL are, respectively,
assumed to be αH(TH − T (w)

H ) and αL(T (w)
L − TL). Here, αH and αL are con-

stants which depend on thermal conductivity of working fluid. In the isothermal
expansion and compression processes, the input energy WH and the discarded
energy WL can be written as

WH = αHtH(TH − T (w)
H ), (2.20)

WL = αLtL(T (w)
L − TL), (2.21)

where tH and tL are the operation times for heating and cooling processes, re-
spectively. During the adiabatic processes, we assume that there is no heat ex-
change with the surroundings. Requiring that adiabatic processes are reversible,
we obtain the condition

WH

T
(w)
H

=
WL

T
(w)
L

,

i.e.

tH
tL

=
αLT

(w)
H (T (w)

L − TL)

αHT
(w)
L (TH − T (w)

H )
, (2.22)

where tH and tL are not independent. Assuming that the adiabatic processes
spend the same time to the isothermal ones 1, the power P of the engine is given

1In the original paper [109], the adiabatic processes are assumed to take (γad−1)(tH + tL),
where γad is a constant. However, the assumption does not change the maximum power
condition.
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by

P =
WH −WL

2(tH + tL)
. (2.23)

Using the relation (2.22), we eliminate tH/tL from Eq. (2.23):

P =
αLαH

2
xHxL(TH − TL − xH − yL)

αLTHxL + αHTLxH + xHxL(αH − αL)
(2.24)

xH ≡ TH − T (w)
H (2.25)

xL ≡ T
(w)
L − TL. (2.26)

The maximum power conditions ∂P/∂x = 0 and ∂P/∂y = 0 are written as

xH

TH
=

1−
√
TL/TH

1 +
√
αH/αL

, (2.27)

xL

TL
=

√
TH/TL − 1

1 +
√
αL/αH

. (2.28)

Thus, we obtain the expression for the efficiency at maximum power output:

η =
WH −WL

WH
= 1−

T
(w)
L

T
(w)
H

= 1− TL + y

TH − x

= 1−
√
TL

TH
= ηCA, (2.29)

which is independent of αH and αL.

2.3.2 Derivation from linearly irreversible thermodynam-
ics

Although derivation by Curzon and Ahlborn is simple, their derivation contains
some strong assumption. Moreover, the applicability of their derivation for
a cycle consisting of isothermal and adiabatic processes is not clear. Van den
Broeck has proved that the CNCA efficiency is the universal one at MP, at least,
for systems near equilibrium by using the linearly irreversible thermodynamics
[111].

We consider an engine working between two temperature reservoirs, where
the temperature difference is sufficiently small so that linearly irreversible ther-
modynamics can be used. The engine performs work Wl = −Fexxl toward the
external force Fex with a conjugate thermodynamic variable xl (e.g. the po-
sition of the piston or the volume of the working fluid). The corresponding
thermodynamic force is X1 = Fex/T , where T denotes the temperature of the
system. The thermodynamic flux is J1 = ẋl = dxl/dt. The power of the engine
is described as

P = Ẇl = −Fexẋl = −J1X1T. (2.30)
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The engine gains the energy from the hot reservoir, which is the corresponding
thermodynamic flux J2 = Q̇H. The corresponding thermodynamic force is the
temperature difference X2 = 1/TL − 1/TH ' ∆T/T 2, where ∆T = TH − TL and
T ≡ TH. Then the Carnot efficiency is ηC = ∆T/T .

Linearly irreversible thermodynamics stems from the fact that the fluxes Ji

are linear combination of thermodynamic variables Xi [149]:

J1 = L11X1 + L12X2, (2.31)
J2 = L21X1 + L22X2, (2.32)

where the Onsager coefficients Lij(i, j = 1, 2) satisfy the relation

L11 ≥ 0, L22 ≥ 0, L11L22 − L12L21 ≥ 0, (2.33)

and the microscopic irreversibility leads to the reciprocal relation

L12 = L21. (2.34)

Let us introduce the coupling strength q as

q ≡ L12√
L11L22

, (2.35)

with −1 ≤ q ≤ 1.
Assuming that the control parameter for the power of the engine is only X1,

we can write the maximum power condition:

∂

∂X1
P = − 1

T

∂

∂X1
(L11X 2

1 + L12X1X2) = 0. (2.36)

Thus, X1 for MP is given by

XMP
1 = −1

2
L12X2

L11
. (2.37)

The obtained efficiency at MP is described as

η =
Ẇ

Q̇H

= −∆T
T

J1X1

J2X2

=
1
2

∆T
T

q2

2− q2
(2.38)

Taking the tight coupling limit |q| → 1, where the fluxes and forces are tightly
coupled, the efficiency corresponds to ηCA ' ∆T/2T , which is the half of the
maximum efficiency ηC in ∆T/T � 1 limit and is identical to the CNCA effi-
ciency in this limit.

So far, we have considered a finite power engine in the linear non-equilibrium
regime. In the following two subsections, to go beyond the linear regime, we
introduce two methods for finite power engines in the nonlinear non-equilibrium
regime. It should be noted that although two methods result in the same results,
the obtained efficiency does not always correctly predicts the efficiency for real
engines.
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2.3.3 Asymptotic derivation of the Chambadal-Novikov-
Curzon-Ahlborn efficiency

Instead of assuming linear non-equilibrium relations (2.31) and (2.32), we start
from the following low-dissipation assumptions:

QH = TH

(
∆S − ΣH

tH
+O

(
t−2
H

))
, (2.39)

QL = TL

(
−∆S − ΣL

tL
+O

(
t−2
L

))
, (2.40)

where ∆S represents the entropy change in the long time limit tH, tL → ∞.
ΣH and ΣL represent the amounts of dissipation induced by the heat currents
from hot and cold reservoirs, respectively [114]. It is easy to recover the Carnot
efficiency in tH, tL → ∞ limit as η = (QH + QL)/QH = 1 − TL/TH = ηC from
the relations (2.39) and (2.40). When the power

P ≡ QH(tH) +QL(tL)
tH + tL

(2.41)

is maximized, we obtain the conditions for tH and tL by solving equations
∂P/∂tH = 0 and ∂P/∂tL = 0. Their physical reasonable solutions are

tH =
2

(TH − TL)∆S

√
ΣHTH

(√
ΣHTH +

√
ΣLTL

)
, (2.42)

tL =
2

(TH − TL)∆S

√
ΣLTL

(√
ΣHTH +

√
ΣLTL

)
. (2.43)

Thus, we obtain the efficiency at MP under the low-dissipation assumption:
ηLD = ηLD (TL/TH,ΣL/ΣH)

ηLD

(
TL

TH
,
ΣL

ΣH

)
=

ηC

(
1 +

√
ΣLTL
ΣHTH

)
(
1 +

√
ΣLTL
ΣHTH

)2

+ TL
TH

(
1− ΣL

ΣH

) . (2.44)

It should be noted that Eq. (2.44) recovers the CNCA efficiency in the sym-
metric dissipation limit ΣH = ΣL:

lim
ΣL/ΣH→1

ηLD

(
TL

TH
,
ΣL

ΣH

)
= 1−

√
TL

TH
= ηCA. (2.45)

On the other hand, by taking the asymmetric limit ΣL/ΣH → 0,+∞, we obtain

lim
ΣL/ΣH→0

ηLD

(
TL

TH
,
ΣL

ΣH

)
=

ηC

2− ηC
≡ η+, (2.46)

lim
ΣL/ΣH→∞

ηLD

(
TL

TH
,
ΣL

ΣH

)
=

ηC

2
≡ η−. (2.47)
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We can show the relation
η− ≤ ηLD ≤ η+. (2.48)

Expanding Eq. (2.44), in terms of ηC , we obtain

ηLD =
ηC

2
+

η2
C

4 + 4
√

ΣL/ΣH

+O(η3
C). (2.49)

Thus, the analysis on the basis of the assumptions (2.39) and (2.40) recovers
the CNCA efficiency in the limit ηC → 0. It is interesting that the inequality
(2.48) is consistent with the efficiency of actual power plants as is shown in Fig.
2.2 [114].

Figure 2.2: The comparison between results in Sec. 2.3.3 and efficiencies for the
actual power plants. Although the assumptions (2.39) and (2.40) are strong,
Eq. (2.48) works well even for actual engines. The data points are obtained
from Ref. [114].

2.3.4 Minimally nonlinear irreversible heat engines

In the previous subsection, we start from phenomenological assumptions and
obtain the reasonable expression for the efficiency at MP. In this subsection, we
introduce the engine called “the minimally nonlinear irreversible heat engine”
[115] by extending the Onsager relation as

J1 = L11X1 + L12X2, (2.50)
J2 = L21X1 + L22X2 − γ̄HJ 2

1 . (2.51)
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The last nonlinear term with the constant γ̄H > 0 in Eq. (2.51) is introduced in
addition to the conventional linear relations (2.31) and (2.32). Here, we consider
the heat flux from the cold reservoir J3 as

J3 ≡ Q̇L = Ẇ − Q̇H = −J1X1TL − J2. (2.52)

We rewrite the relations (2.50) and (2.51) in terms of J2 and J3 as

J2 =
L21

L11
J1 + L22(1− q2)X2 − γ̄HJ 2

1 , (2.53)

J3 = −L21TL

L11TH
J1 − L22(1− q2)X2 − γ̄LJ 2

1 , (2.54)

where a new positive constant is introduced γ̄L ≡ (TL/L11) − γ̄H > 0. When
we use equations (2.53) and (2.54), instead of Eqs. (2.50) and (2.51), J1 is the
control parameter.

The power and efficiency for the minimally nonlinear irreversible heat engine
is P = −J1X1TL = J2 + J3 and η = W/QH = P/J2, respectively. Considering
the maximum power condition ∂P/∂J1 = 0, the efficiency at maximum power
output can be obtained as

η =
ηC

2
q2

2− q2(1 + ηC/{2(1 + γ̄L/γ̄H)})
. (2.55)

It should be noted that the obtained efficiency is bounded as

ηq
− ≤ η ≤ η

q
+, (2.56)

where we have introduced

ηq
− ≡ ηC

2
q2

2− q2
, (2.57)

ηq
+ ≡ ηC

2
q2

2− q2(1 + ηC/2)
. (2.58)

By taking the asymmetric dissipation limit γ̄L/γ̄H → +∞ and γ̄L/γ̄H → 0,
Eqs. (2.57) and (2.58) are derived, respectively. It is interesting that the tight
coupling limit |q| → 1 reduces the previous results as ηq

− → η− and ηq
+ → η+.

2.3.5 Efficiency at maximum power output for multi-component
chemical engine

Although the low-dissipation assumptions for heat engines (2.39) and (2.40) in
Sec. 2.3.3 are simple, their results are consistent with the efficiency for actual
power plants. Let us adopt the low-dissipation assumptions to the chemical en-
gine in Sec. 2.1.3. In this subsection, we extend the result of a single-component
chemical engine in Ref. [142] toward a multi-component chemical engine. Here

19



we assume that the chemical solution is well stirred to avoid the phase sep-
aration, where the system can be described by the kinetic equations without
spatial inhomogeneity. To treat the phase separation effect, we need to take
into account the Doi-Peliti formalism [143–148] for finite-time thermodynamics.

Once the operation is performed in the finite-time {ti}ni=1, ηchem cannot
reach ηCC, because µi 6= µ0

i for the (2i − 1)th step and the container cannot
absorb or release ideal molar number for the i + 1th molecule in the (2i)th
step [142]. On the basis of the low-dissipation assumption, the chemical energy
collected or produced through the cycle are expressed as

Wchem({ti}ni=1) = (A0
+ −A0

−)
∮
dξ −

∑
i

ac
i

τi
ti

∮
dξ +O

(
τ2
i

t2i

)
, (2.59)

G+({ti}ni=1) = A0
+

∮
dξ −

∑
νi>0

ac
i

τi
ti

∮
dξ +O

(
τ2
i

t2i

)
, (2.60)

where ac
i > 0 and τi are the loss of the chemical energy due to the finite-time-

operation and the relaxation time for the change of the ith molecule number,
respectively. The power Pw of the chemical engine can be defined as

Pw ≡
Wchem({ti}ni=1)∑

i ti
. (2.61)

{ti}ni=1 at MP is derived from ∂Pw/∂ti = 0 (i = 1, 2, · · · , n):

tMP
i =

2
√
ac

iτi

A0
+ −A0

−

 n∑
j=1

√
ac

jτj

 . (2.62)

Thus, the efficiency at maximum power output can be derived as

ηchem({tMP
i }ni=1) =

ηCC

2

(
1− ηCC

2

∑
νi>0

√
ac

iτi∑
i

√
ac

iτi

)−1

. (2.63)

If the dissipation is symmetric: ac
1τ1 = ac

2τ2 = · · · = ac
nτn, Eq. (2.63) becomes

simpler:

ηchem({tMP
i }ni=1) =

ηCC

2

(
1− ηCC

2
np

n

)−1

(2.64)

We note that the efficiency at MP is given by the half of the maximum efficiency
ηchem({tMP

i }ni=1) ' ηCC/2 in the linear non-equilibrium limit ηCC → 0.
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Chapter 3

A Short Course of
stochastic analysis

Abstract

In this chapter, we briefly summarize the formulas of stochastic analysis used in
this thesis. We only consider white processes, where the noise is delta-correlated.
In Sec. 3.1 we introduce stochastic integrals and derive formulas for the master
equation of the given stochastic differential equation (SDE), in Sec. 3.2. In
Sec. 3.3, we apply the derived formulas to physical systems. We discuss the
system size expansion method proposed by van Kampen [7] and its extension
to non-Gaussian processes [92,93] in Sec. 3.4.

3.1 Stochastic integrals

For stochastic quantities, it is well-known that the integral depends on the
method of the discretization. The familiar methods of the division are called
the Itô type and the Stratonovich type, which are, respectively, represented as
· and ◦. In this section, we introduce the corresponding stochastic integrals.

For a white Gaussian noise ξ̂G(t), the Wiener process B̂(t) is defined as

B̂(t) ≡
∫ t

0

ξ̂G(s)ds (3.1)

and its time differential dB̂(t) are introduced for convenience. Formally, we
write the time differential as ξ̂G(t)dt = dB̂(t). For the Wiener process, we know
the convenient properties

dB̂2 = O(dt), dB̂n = o(dt) (n ≥ 3). (3.2)
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In parallel to the Gaussian noise, we introduce the Lévy process L̂(t) as

L̂(t) ≡
∫ t

0

ξ̂NG(s)ds, (3.3)

where ξ̂NG represents the non-Gaussian noise. We can formally write the time
differential as dL̂(t) = ξNG(t)dt. We should note that

dL̂n = O(dt), (3.4)

is satisfied, which is the significant difference from Eq. (3.2).

3.1.1 Itô type stochastic integral

In this subsection, we define the Itô type stochastic integral:∫ t

0

dsb(s, x̂(s)) · ξ̂NG(s) ≡ lim
∆t→0

N∑
k=0

{
∆L̂(tk)b(tk, x̂(tk))

}
, (3.5)

where we have introduced ti ≡ i∆t, ∆t ≡ t/N , tN+1 ≡ t and ∆L̂(tk) ≡
L̂(tk+1) − L̂(tk). b(t, x) is a continuous function of t and x. The important
property for the Itô type stochastic integral is martingale, i.e.,

〈b(s, x̂(s)) · dL̂(s)〉 = 〈b(s, x̂(s))〉〈dL̂(s)〉, (3.6)

where 〈· · · 〉 represents the ensemble average. Because Eq. (3.6) is useful to
calculate the average, the Itô type integral is often used. For ξ̂G, we can define
the integral replacing ξ̂NG by ξ̂G.

3.1.2 Stratonovich type stochastic integral

The Stratonovich product is often used for thermal processes, such as the
stochastic energetics, which will be discussed in Chapter 4. We note that the
corresponding product is ill-defined for the Lévy process. We introduce the
Stratonivich product for the Wiener process∫ t

0

dsb(s, x̂(s)) ◦ ξ̂G(s) ≡ lim
∆t→0

N∑
k=0

{
∆B̂(tk)b

(
tk,

x̂(tk+1) + x̂(tk)
2

)}
. (3.7)

It should be noted that martingale property Eq. (3.6) is no longer valid for the
Stratonivich product, while the ordinary calculus, e.g. dh(x̂(t)) = h′(x̂(t))◦dx̂(t)
for an arbitrary analytic function h(x), can be used for the Wiener process as
is shown later. Instead of the Stratonovich product, a different product “∗” is
used for the ordinary calculus of the Lévy process as is discussed in Ref. [47].
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3.2 Stochastic differential equation and master
equation

Let us consider the following stochastic differential equation (SDE) driven by a
non-Gaussian noise ξ̂NG(t):

dx̂

dt
= a(t, x̂(t)) + b(t, x̂(t))ξ̂NG(t). (3.8)

This equation is ambiguous because the product for b(t, x̂(t))ξ̂NG(t) is not ex-
plicitly declared. The SDE with the Itô type stochastic integral is called the Itô
type SDE:

dx̂

dt
= a(t, x̂(t)) + b(t, x̂(t)) · ξ̂NG(t). (3.9)

If b(t, x̂) does not depend on x̂, the SDE is called to be additive, otherwise, it
is called multiplicative. In this section, we define the Itô type SDEs and derive
the corresponding Master equation.

Itô type SDE driven by a non-Gaussian noise

We write the evolution of a stochastic quantity x̂(t) by the discretized method:

x̂(t)− x̂(0) ≡
N∑

k=0

{
∆ta(tk, x̂(tk)) + ∆L̂(tk)b(tk, x̂(tk))

}
. (3.10)

Taking the continuous limit ∆t → 0 for Eq. (3.10), we obtain the stochastic
integral equation for x̂NG(t):

x̂(t)− x̂(0) =
∫ t

0

dsa(s, x̂(s)) +
∫ t

0

dsb(s, x̂(s)) · ξ̂NG(s). (3.11)

The stochastic differential equation for x̂(t) is defined as the differential of Eq.
(3.11):

dx̂

dt
= a(t, x̂(t)) + b(t, x̂(t)) · ξ̂NG(t). (3.12)

Similarly, we can define the Itô type SDE driven by a Gaussian noise.
Here, let us derive the time evolution for the distribution f(x, t) ≡ Prob(x =

x̂(t)), following Ref. [8]. For an arbitrary analytic function g(x), its derivative
is calculated through the Taylor expansion:

dg(x̂) ≡ g(x̂+ dx̂)− g(x̂) (3.13)

=
∞∑

n=1

∂ng

∂x̂n

(dx̂)n

n!
(3.14)

=
∞∑

n=1

∂ng

∂x̂n

(adt+ b · dL̂)n

n!
(3.15)

=
∂g

∂x̂
adt+

∞∑
n=1

1
n!

{
∂ng

∂x̂n
(b · dL̂)n

}
(3.16)
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It should be noted that dL̂n = O(dt) holds. By taking the ensemble average of
Eq. (3.16), we obtain∫

∂f

∂t
g(x)dx =

∫
dx
∂g

∂x
a(t, x)f(x, t)

+
∞∑

n=1

∫
dx
∂ng

∂xn

(
bn(t, x)
n!

〈dL̂n〉
dt

f(x, t)

)
(3.17)

=
∫
dxg(x)

∂

∂x
(−a(t, x)f(x, t))

+
∞∑

n=1

∫
dxg(x)

∂n

∂xn

{
(−b(t, x)n)

n!
Knf(x, t)

}
, (3.18)

where we have introduced 〈dL̂n〉 ≡ Kndt. Here, we have used the martingale
property Eq. (3.6). Because g(x) is an arbitrary function, we obtain Master
equation for Eq. (3.12):

∂f

∂t
=

∂

∂x
(−a(t, x)f(x, t)) +

∞∑
n=1

∂n

∂xn

{
(−b(t, x))n

n!
Knf(x, t)

}
. (3.19)

Ito type SDE driven by many independent non-Gaussian noises

Because the extension toward the SDE driven by many independent non-Gaussian
noises ξ̂ν(t)(ν = 1, 2, · · · , n) is straightforward, we skip the derivation. The SDE
driven by many independent non-Gaussian noises is defined as

dx̂

dt
= a(t, x̂) +

n∑
ν=1

bν(t, x̂) · ξ̂ν(t), (3.20)

L̂ν(t) ≡
∫ t

0

dsξ̂ν(s), (3.21)

〈dL̂n
ν (t)〉 ≡ K(ν)

n dt. (3.22)

The corresponding master equation is represented as

∂f

∂t
=

∂

∂x
(−a(t, x)f(x, t)) +

∞∑
n=1

∂n

∂xn

{
n∑

ν=1

(−bν(t, x))n

n!
K(ν)

n f(x, t)

}
. (3.23)

Stratonovich type SDE driven by a Gaussian noise

Let us consider the Stratonovich type SDE driven by a Gaussian noise. Similar
to Eq. (3.10), we discretize x̂(t) as

x̂(t)− x̂(0) ≡
N∑

k=0

{
∆ta(tk, x̂(tk)) + ∆B̂(tk)b

(
tk,

x̂(tk+1) + x̂(tk)
2

)}
. (3.24)

24



By taking the continuous limit ∆t→ 0, we obtain the stochastic integral equa-
tion for x̂(t)

x̂(t)− x̂(0) =
∫ t

0

dsa(s, x̂(s)) +
∫ t

0

dsb(s, x̂(s)) ◦ ξ̂G(s). (3.25)

Taking the differential of Eq. (3.25), we can define the SDE for x̂(t) driven by
a Gaussian noise:

dx̂

dt
= a(t, x̂(t)) + b(t, x̂(t)) ◦ ξ̂G(t). (3.26)

We can derive the Master equation for Eq. (3.26) as follows.

dg(x̂) =
∞∑

n=1

∂ng

∂x̂n

(adt+ b ◦ dB̂)n

n!
(3.27)

=
∞∑

n=1

1
n!

{
∂g

∂x̂
adt+

∂ng

∂x̂n
(b ◦ dB̂)n

}
(3.28)

We note that the martingale property cannot be used when we take the ensemble
average of Eq. (3.28). From Eq. (3.2), the master equation for Eq. (3.26) can
be obtained as:

∂f

∂t
=

∂

∂x
(−a(t, x)f(x, t)) +

1
2

{(
− ∂

∂x
b(t, x)

)2

f(x, t)

}
. (3.29)

Here, we have assumed 〈dB̂(t)〉 = 0 and 〈dB̂2(t)〉 = dt.
For later convenience, we derive the formula, which connects the Itô type

stochastic integral with the Stratonovich one. For an arbitrary analytic function
h(x), the differential is given by

dh(x̂(t)) = h′(x̂(t))dx̂(t) +
h′′(x̂(t))

2
dx̂(t)2 + · · ·

=
{
h′(x̂(t)) + h′′(x̂(t))

dx̂(t)
2

}
dx̂(t) + · · · (3.30)

= h′
(
x̂(t) +

dx̂(t)
2

)
dx̂(t) + · · ·

=
h′(x̂(t+ dt)) + h′(x̂(t))

2
dx̂(t) + · · ·

= h′(x̂(t)) ◦ dx̂(t). (3.31)

Introducing the H(x) ≡ h′(x) and comparing Eqs. (3.30) and (3.31), we obtain
the formula:

H(x̂(t)) ◦ dx̂(t) = H(x̂(t)) · dx̂(t) +
H ′(x̂(t))

2
(dx̂(t))2, (3.32)
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where we have abbreviated “·” in the second term on the right-hand side for
simplification. For example, substituting Eq. (3.26) and H = b(x̂(t), t) into Eq.
(3.32), we obtain the Itô formula:

b(x̂(t), t) ◦ dB̂(t) = b(x̂(t), t) · dB̂(t) +
b(x̂(t), t)

2
∂b(x̂(t), t)
∂x̂(t)

dt, (3.33)

which enable us to transform Eq. (3.26) into the Itô type SDE.

3.3 Application to physical systems

In this section, we apply the obtained formulas in the previous section to physical
systems.

3.3.1 Langevin equation driven by a Gaussian noise

Langevin equation without potential under a Gaussian noise

A Langevin equation without potential under a Gaussian noise is written as

M
dV̂

dt
= −γV̂ +

√
2γkBTξG(t), (3.34)

〈ξG(t)〉 = 0, (3.35)
〈ξG(t)ξG(s)〉 = δ(t− s) (3.36)

We use the relation between Eqs. (3.12) and (3.19), changing x → V , a →
−γV/M , and b →

√
2γkBT/M , to obtain the master equation. The corre-

sponding master equation for Eq. (3.34) is obtained as

∂f

∂t
=

∂

∂V

γ

M
V f +

γkBT

M2

∂2f

∂V 2
(3.37)

We note that Kn = 0 (n ≥ 3).

Langevin equation with potential under a Gaussian noise

A Langevin equation with potential under a Gaussian noise is written as

M
dV̂

dt
= −γV̂ − ∂U

∂x̂
+
√

2γkBTξG(t), (3.38)

dX̂

dt
= V̂ (3.39)

The corresponding master equation is written as

∂f

∂t
= − ∂

∂X
V f +

∂

∂V

(
γ

M
V +

∂U

∂X

)
f +

γkBT

M2

∂2f

∂V 2
. (3.40)

26



3.3.2 Langevin equation driven by non-Gaussian noises

Langevin equation driven by a state-dependent Poissonian noise

We consider the Langevin equation driven by a state-dependent Poissonian noise
whose amplitude is I and the birth rate is λ.

dV̂

dt
= −γV̂ + Iξ̂P(t, V̂ ) (3.41)

ξP(t, V̂ ) ≡
∑

i

δ(t− t̂i) (3.42)

L̂P (t, V̂ ) ≡
∫ t

0

ξ̂P(s, V̂ )ds (3.43)

〈dL̂n
P (t, V̂ )〉 = λ(V )dt (3.44)

The Poissonian noise is state-dependent in the sense that λ(V ) depends on V .
Replacing x → V , a → −γV , b → I and Kn → λ(V ) in Eq. (3.19), we obtain
the corresponding Master equation:

∂f

∂t
=

∂

∂V
(γV f(V, t)) +

∞∑
n=1

∂n

∂V n

{
(−I)n

n!
λ(V )f(V, t)

}
. (3.45)

Stochastic equation of motion driven by many state-dependent Pois-
sonian noises

We consider the following SDE:

M
dV̂

dt
= F̂ (3.46)

F̂ ≡
∑

v

Pv(V̂ ) · ξ̂v(t|V̂ ) (3.47)

L̂v(t) ≡
∫ t

0

ξv(s|V̂ )ds (3.48)

〈dL̂n
v (t)〉 ≡ λv(V )dt (3.49)

By setting a→ 0, bν → Pν/M andKν
n → λν , the corresponding Master equation

is obtained from Eq. (3.23):

∂f

∂t
=

∞∑
n=1

∂n

∂V n

∑
v

{(
−Pv

M

)n
λv(V )
n!

f(V, t)
}
. (3.50)

We note that the obtained equation corresponds to the one-dimensional Boltzmann-
Lorentz equation, if we interpret λv(V ) and Pv as

λv(V ) = |v − V |ρSφ(v)dv, (3.51)

Pv(V ) =
2mM
m+M

(v − V ), (3.52)
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respectively and replace
∑

v by the integral
∫

. This is known as the Rayleigh
piston (Fig. 3.1) [150]. Here, ρS is the one dimensional density and φ(v) is the
VDF for colliding elastic molecules of mass m. λv(V ) represents the collision
probability of a molecule with the velocity between v and v + dv against the
massive tracer M . Pv is the momentum change due to the collisions.

Figure 3.1: A schematic figure of the Rayleigh piston. The piston moves one
dimensionally in the bath whose VDF is given by φ(v).

3.4 System size expansion method

We introduce the system size expansion methods to derive state-independent
SDEs from master equations.

3.4.1 van Kampen’s system size expansion

We consider a stochastic variable V̂ , which represents, for example, the velocity
of the piston moving in one-dimensional direction without any side-wall friction
(the Rayleigh piston). The time evolution of the probability distribution func-
tion (PDF) P = P (V, t) ≡ Prob(V̂ (t) = V ) driven by the state-dependent white
noise can be described by the Boltzmann-Lorentz equation [7, 8]:

∂P

∂t
=

∫
dy {WεΩ(V − y; y)P (V − y, t)−WεΩ(V ; y)P (V, t)} , (3.53)

where WεΩ(V ; y) represents the transition probability of the jump amplitude
y when the piston velocity is V , i.e. the noise is state-dependent. We have
also introduced the small parameter εΩ, which corresponds to the inverse of the
system size. We note that WεΩ(V ; y) satisfies the relation with Y ≡ y/εΩ

W̄ (V ;Y)dY = WεΩ(V ; y)dy, (3.54)

where W̄ is εΩ independent [7].
Introducing and substituting the scaled variables

VG ≡ V
√
εΩ
, (3.55)

τ ≡ εΩt (3.56)
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and P (G) = P (G)(VG, τ) ≡
√
εΩP (

√
εΩVG, τ/εΩ) into Eq. (6.6), we obtain the

Fokker-Planck equation in the limit εΩ → 0:

∂P (G)

∂τ
= − ∂

∂VG
K ′

1(0)VGP
(G) +

∂2

∂V 2
G

K2(0)P (G) +O(
√
εΩ), (3.57)

Kn(V ) ≡
∫
dYYnW̄ (V ;Y), (3.58)

which is equivalent to the Langevin equation

M
dV̂G

dτ
= −γGV̂G +

√
2γGTeff ξ̂G(τ), (3.59)

Here, γG ≡ MK ′
1(0), 〈ξ̂G(τ)〉 = 0 and 〈ξ̂G(τ1)ξ̂G(τ2)〉 = δ(τ1 − τ2). We have

introduced the effective temperature Teff as

Teff ≡
MK2(0)
K ′

1(0)
. (3.60)

Therefore, as expected, the steady state distribution function P (G)
ss ≡ limτ→∞ P (G)

is Gaussian:

P (G)
ss =

√
M

2πTeff
exp

[
−MV 2

G

2Teff

]
. (3.61)

3.4.2 Generalized system size expansion

We consider the case that a stochastic variable coupled with two environments.
One is the same as Eq. (6.6), and another one is the viscous environment
Ffri = −γvisV [92,93]. Note that the detailed discussion when Ffri is a nonlinear
function or Ffri is driven by a noise is found in Ref. [93]. The starting point is

∂P

∂t
=

γvis

M

{
∂

∂V
V P

}
+
∫
dy {WεΩ(V − y; y)P (V − y, t)−WεΩ(V ; y)P (V, t)} ,

(3.62)

We assume that the friction satisfies the relation γvis/γG = O(1). Introducing
the scaled variable:

V ≡ V

εΩ
, (3.63)

and taking the limit εΩ → 0 in Eq. (3.62), we obtain the time evolution for
P = P(V, t) = εΩP (εΩV, t):

∂P
∂t

=
γvis

M

{
∂

∂V
VP
}

+
∫ ∞

−∞
dYW(Y) {P(V − Y, t)−P(V, t)} , (3.64)

which is equivalent to the Langevin equation driven by additive non-Gaussian
noises:

M
dV̂
dt

= −γvisV̂ + ξ̂NG(t). (3.65)
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Here, the transition rate for ξ̂NG(t) is given by W(Y) ≡ W̄ (V = 0;Y). The
steady state distribution function for Eq. (3.64) is solved by introducing the
Fourier transform P̃ss(s) ≡

∫
dV eisV Pss(V ) with Pss ≡ limt→∞ P(V, t) [151]:

P̃ss(s) = exp
[
M

γvis

∫ s

0

Φ(s′)
s′

ds′
]
, (3.66)

where Φ(s) represents the cumulant generating function:

Φ(s) ≡
∫ ∞

−∞
dYW (Y)

(
eisY − 1

)
. (3.67)
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Chapter 4

Stochastic Energetics

Abstract

In this chapter, we briefly review the stochastic energetics proposed by Sekimoto
[44–46]. After the brief introduction in Sec. 4.1, we explain and derive basic
relations for stochastic energetics in Sec. 4.2, and discuss the attainability of
the Carnot efficiency within the framework of stochastic energetics, following
Ref. [152] in Sec. 4.3. In Sec. 4.4, we explain a recent experimental result on
the finite-time thermodynamics on the basis of stochastic energetics.

4.1 Introduction

There are three levels of understanding the nature. One relies on microscopic
Hamiltonian dynamics, where the system is completely deterministic. Another
is based on thermodynamics or hydrodynamics described by a few slow vari-
ables. The other understanding is by mesoscopic description, where some de-
gree of freedom are traced out, and thus, a stochastic description in terms of
the Langevin equation is necessary. Equilibrium thermodynamics provides the
universal relations in terms of ensemble averaged quantities, while stochastic
energetics provides the corresponding relations even for a single trajectory of
the Langevin equation [44,45].

4.2 Basic relations for stochastic energetics

We consider the one-dimensional underdamped Langevin equation driven by a
Gaussian white noise:

m
dv̂

dt
= −∂U

∂x̂
(x̂; a(t))− γv̂ +

√
2γT ξ̂G(t), (4.1)

dx̂

dt
= v̂, (4.2)
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where a = a(t) represents an external control parameter. A single colloidal
particle trapped by an optical tweezer is a typical example to realize Eqs. (4.1)
and (4.2) and a represents the width of the tweezer [44,45].

First law of thermodynamics in the single realization

By multiplying v̂ to Eq. (4.1), we obtain the following equations.

dÊ = dŴ + dQ̂ (4.3)

Ê ≡ mv̂2

2
+ U(x̂; a), (4.4)

Ŵ ≡
∫
∂U

∂a
(x̂; a)da, (4.5)

Q̂ ≡
∫

(−γv̂ +
√

2γT ξ̂G(t)) ◦ v̂dt. (4.6)

Here, Ê and Ŵ represents the total energy of the Brownian particle and the
work done by the external agent. Q̂ represents the work done by the viscous en-
vironment, which can be interpreted as the heat. Thus, Eq. (4.3) is interpreted
as the first law of thermodynamics in the single realization. We note that the
ensemble average of Eq. (4.3) leads to the conventional first law of equilibrium
thermodynamics.

The heat current (4.6) is rewritten as

dQ̂ = −2γ
m

(
mv̂2

2
− T

2

)
dt+

√
2γT v̂ · dB̂, (4.7)

where we have used Eq. (3.32) and dB̂2 = dt. By taking the ensemble average,
we obtain the expression for the heat current:

〈dQ̂〉 = −2γdt
m

(〈
mv̂2

2

〉
− T

2

)
. (4.8)

It should be noted that the direction of the heat is completely determined by
the difference between kinetic energy of the Brownian particle and the bath
temperature, where the current is independent of potential U . Equation (4.8)
can be rewritten as

〈dQ̂〉 = d

[∫
EPdxdp

]
− da

∫
∂E

∂a
Pdxdp

=
∫
E
∂P
∂t
dxdp, (4.9)

where we have introduced the energy E(x, p, a) = p2/m+ U(x, a) and the mo-
mentum p = mv. P = P(x, p, t) represents the PDF for the Brownian particle.
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Recalling that the Kramers equation can be written in a compact form:

∂P
∂t

= −∂Jx

∂x
− ∂Jp

∂p
, (4.10)

Jx ≡ p

m
P, (4.11)

Jp ≡
(
−∂U
∂x
− γ p

m

)
P − ∂

∂p
γTP, (4.12)

we obtain

〈dQ̂〉 = dt

[∫ (
∂E

∂x
Jx +

∂E

∂p
Jp

)
dxdp

]
. (4.13)

H-theorems

Let us define the Shanon entropy SB of the Brownian particle:

SB ≡ −
∫
P logPdxdp, (4.14)

where we have adopted the dimensionless unit for the entropy. The total deriva-
tive of SB leads to

dSB

dt
− 1
T

〈dQ̂〉
dt

=
∫

1
P
γ

T

[
p

m
P + T

∂P
∂p

]2
dxdp ≥ 0, (4.15)

which means that SB − 〈Q̂〉/T is non-decreasing. The second term on the left-
hand side of Eq. (4.15) represents the entropy changes of the heat bath.

Following the similar procedure, we can obtain expressions for first law of
thermodynamics, the average heat current, and the total entropy change for the
overdamped Langevin system:

0 = −∂U
∂x̂

(x̂; a(t))− γ dx̂
dt

+ ξ̂G(t). (4.16)

We summarize the formulas as follows:

dU = dÊ + dQ̂, (4.17)

〈dQ̂〉 = −dt
γ

[〈(
∂U

∂x̂

)2
〉
− T

〈
∂2U

∂x̂2

〉]

= dt

∫ [
∂U

∂x
Jx

]
dx, (4.18)

dSB

dt
− 1
T

〈dQ̂〉
dt

=
∫

1
P
γJ2

x

T
dx ≥ 0. (4.19)
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4.3 Attainability of Carnot’s efficiency for a Brow-
nian engine

Within the framework of stochastic energetics, we discuss the Brownian engine
whose attainable efficiency is given by ηC in a quasi-static operation following
Ref. [152].

Figure 4.1: (a) A schematic figure of the Brownian heat engine, whose effi-
ciency under the quasi-static operation is given by the Carnot efficiency. (b) A
schematic figure of the attachment and detachment potential.

Setup

The schematic setup is shown in Fig. 4.1 (a) [152]. We consider the single
particle x̂ connected to a harmonic spring U(x̂; k) = −kx̂2/2 and heat baths via
2π-periodic interacting potentials φν(ẑ;χν) (ν = H or L):

dp̂

dt
= −kx̂−

∑
ν=H,L

∂φν

∂x̂
(x̂− ŷν ;χν), (4.20)

dx̂

dt
=

p̂

m
, (4.21)

where ŷν represents the stochastic variable attached to a heat bath ν = H or L.
The heat baths are assumed to be characterized by the overdamped Langevin
equations:

0 = −γν
dŷν

dt
+
√

2γνTν ξ̂G(t)− ∂φν

∂ŷν
(x̂− ŷν ;χν), (4.22)

where maxz{φν(z;χν = 1)} � T and φν(ẑ, χν = 0) = 0 hold. Here, 0 ≤
χν ≤ 1 represents the detachment/attachment parameter as follows. χν = 1
corresponds to the attached state, where the system x̂ and the bath ŷν are
tightly coupled, i.e., the probability for x̂ − ŷν = 2lπ(l = 0, 1, 2, · · · ) with the
integer l is almost 1. On the other hand χν = 0 corresponds to the detached
state, where the system x̂ and the bath ŷν are not correlated at all. See Fig.
4.1 (b) for the schematic figure of φν(ẑ, χν).
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The reason why we have introduced the stochastic variable ŷν and the pa-
rameter χν is to discuss the cost of attachment/detachment [152]. Once an
isolated system is attached to a heat bath, its energy fluctuates in time. After
the detachment, the relaxation time toward the canonical distribution diverges,
because the energy of the isolated system is fixed. Thus, it is necessary to
consider the cost of operations [45].

Operation protocol

The schematic figure of the operation protocol is shown in Fig. 4.2, where
the attachment/detachment protocols are represented by χν axes. Initially, the
system is at the state A0. The spring constant is strengthened to be the state B0

(adiabatic process). The heat bath TH is attached to the system (B0 → BH).
The isothermal expansion process change the state from BH to CH. Then,
the heat bath is detached (CH → C0). After the adiabatic expansion process
C0 → D0, we attach and detach to compress the system isothermally and the
system comes back to the initial state (D0 → DL → AL → A0).

Figure 4.2: Operation protocol in Ref. [152]. Attachment and detachment pro-
cesses are explicitly shown as χν(ν = H or L) axis.

Efficiency

We can show that the average work for the attachment and detachment processes
are cancelled by choosing a proper choice of the ratio between the expansion
and compression as follows. The Helmholtz free energy is calculated to be

e−F (Tν ,k,χν)/Tν =
∫
dxdpdyν exp [−{H(x, p, k) + φν(x− yν , χν)}/Tν ]

=
∫
dxdpe−H(x,p,k)/Tν

∫
dze−φν(z,χν)/Tν , (4.23)
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i.e.

F (Tν , k, χν) = −Tν

2
ln
mT 2

ν (4π)4

k
+ F̃ (Tν , χν) + Const., (4.24)

where we have introduced the Hamiltonian H(x, p, k) = p2/2m+U(x; k). Here,
F̃ is defined by F̃ (Tν , χν) ≡ −Tν log

∫
dz exp[−φν(z;χν)/Tν ]. The sum of the

following works for four processes is equal to zero:

W (AL → A0) = F (TL, kA, 0)− F (TL, kA, 1), (4.25)
W (D0 → DL) = F (TL, kD, 1)− F (TL, kD, 0), (4.26)
W (B0 → BH) = F (TH, kB, 1)− F (TH, kB, 0), (4.27)
W (D0 → DL) = F (TH, kC, 0)− F (TH, kC, 1), (4.28)

because W (AL → A0) + W (D0 → DL) = 0 and W (B0 → BH) + W (D0 →
DL) = 0 hold from Eq. (4.24) [45].

Works during the adiabatic operations (along k axis in Fig. 4.2) can be
cancelled as follows. Let us recall that there exists an adiabatic invariant for a
harmonic oscillator:

I(E, k) =
E

2π

√
m

k
. (4.29)

Thus, before and after the adiabatic processes, the energy is changed as E →
E′ = E

√
k′/k, where ′ represents the quantities after the processes. The average

work for each adiabatic process is given by

〈W (A0 → B0)〉 = TL

(√
kB

kA
− 1

)
, (4.30)

〈W (C0 → D0)〉 = TH

(√
kD

kC
− 1

)
. (4.31)

The sum of Eqs. (4.30) and (4.31) is vanished, if we choose the condition√
kB

kA
=
TH

TL
,

√
kD

kC
=
TL

TH
. (4.32)

Therefore, the average work for the attachment and detachment processes can
be regarded as zero by the proper choice of the expansion and compression ratio.

The work in isothermal processes can be calculated by the integration of the
free energy. The total work in a single realization is given by

Wtot = W (BH → CH) +W (DL → AL) =
TH − TL

2
ln
kC

kB
. (4.33)

From the energy balance, we obtain

QH(BH → CH) = ∆E(BH → CH)−W (BH → CH), (4.34)
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where ∆E(BH → CH) denotes the energy change from the state BH to CH. From
Eq. (4.24), the average energy 〈E(BH → CH)〉 = −T 2

H∂(F (TH, k, 1)/TH)/∂TH

does not depend on k. Hence, we obtain 〈∆E(BH → CH)〉 = 0 and

〈QH(BH → CH)〉 = −〈W (BH → CH)〉 =
TH

2
ln
kC

kB
. (4.35)

From Eqs. (4.33) and (4.35), the efficiency is given by the Carnot efficiency:

η =
−Wtot

〈QH(BH → CH)〉
= ηC . (4.36)

4.4 Finite time engine for stochastic energetics

In this section, we briefly explain an experimental setup corresponding to a
finite-time thermodynamic cycle in a fluctuating system. We can use the analogy
between a gas partitioned by a piston and a single colloidal particle trapped by
an optical tweezer, where the volume for the former corresponds to the width of
the optical tweezer for the latter. Thus, repeating heating and cooling processes
and changing the width of the optical tweezer, the single particle heat engine
can be realized experimentally [128]. Figure 4.3 represents the schematic figure
of Ref. [128], where a Brownian particle is trapped by the optical tweezer and
operated cyclically in two different baths at TH and TL. In Ref. [128], a single
melamine bead of diameter 2.94 µm trapped by a parabolic potential in water
is heated or cooled by a laser and the efficiency at MP agrees with ηCA within
experimental errors.

Figure 4.3: Schematic figure of the experimental realization for a micrometer-
sized stochastic heat engine in Ref. [128].
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Chapter 5

Adiabatic piston problem
under nonlinear friction

Abstract

The motion of an adiabatic piston under nonlinear sliding friction is investigated
to clarify the roles of the sliding friction in the fluctuating motion of an adiabatic
piston. We clarify that dry friction can reverse the direction of the piston motion
and causes a discontinuity or a cusp-like singularity for the VDFs of the piston.
Furthermore, we show that the direction of the piston motion depends on the
amplitude of the friction and nonlinearity of the friction. We also show that the
heat fluctuation relation is modified under dry friction.

5.1 Introduction

Friction is ubiquitous in nature from a biological surface to an atomic-scale sur-
face [15–17,25]. However, the ubiquitousness yields problems, such as wear and
rupture, in manufacturing small machines. We study energy transfer, such as
momentum or heat transfer, of a fluctuating object subjected to sliding fric-
tion. For this purpose, we study the motion of an adiabatic piston under the
mechanical equilibrium, which is located between two equilibrium environments
characterized by two different temperatures and densities. Lieb suggested that
the equilibrium thermodynamics cannot tell us whether the adiabatic piston
moves or not [153,154]. This problem is solved analytically by using Boltzmann-
Lorentz equation [155] and is recently phenomenologically understood through
the concept of the momentum transfer deficit due to dissipation (MDD) [156].
However, the motion of the adiabatic piston under nonlinear sliding friction
including dry friction is little known.

Let us clarify the difference from previous studies [38–40]. Although the roles
of dry friction in the asymmetric granular piston with the different restitution
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coefficient have already been discussed in Ref. [38], its roles in the symmetric
piston exposed to two thermal gases of different temperatures have not been
analyzed yet. Baule and Sollich have studied a solvable model for a fluctuat-
ing piston whose two faces are respectively kicked by a single state-independent
Poissonian noise under dry friction, assuming an exponential distribution for the
amplitude and the constant event probability for each noise [39, 40]. However,
the motion of the piston surrounded by the two thermal gases, which are char-
acterized by state-dependent compound Poissonian noises, under dry friction
has not been analyzed yet.

Figure 5.1: Schematic picture for the system with a fluctuating boundary un-
der sliding friction. Blue zigzag lines represent the sliding friction. Ideal gas
molecules are enclosed in a container and the piston with a finite mass M sepa-
rate gas into two regions. Molecule mass for the left and right gas is respectively
given bymL andmR. Gas densities nL, nR and temperatures TL, TR are assumed
to be constants.

5.2 Setup

We consider the fluctuating piston of mass M and area S, which moves along the
frictional cylinder one-dimensionally, attached to two environments as follows.
The density of the gas, temperature and molecule mass are respectively given
by nν , Tν and mν (ν = L or R). See Fig. 5.1. The time evolution of the
probability distribution function (PDF) for the piston velocity V is given by
the Boltzmann-Lorentz equation:

∂P

∂t
+

∂

∂V

Ffri

M
P =

∫
dV ′ {WL(V ← V ′)P (V ′, t)−WL(V ′ ← V )P (V, t)}

+
∫
dV ′ {WR(V ← V ′)P (V ′, t)−WR(V ′ ← V )P (V, t)} ,

= JL + JR. (5.1)

where we have introduced the transition rate Wν(V ′ ← V ) and velocity-dependent
side-wall friction Ffri = Ffri(V ). See also Chapter 3 for the Rayleigh piston prob-
lem. We assume that Ffri(V ) is an odd function of V as Ffri(−V ) = −Ffri(V ).
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We have introduced the collision integral Jν(ν = L or R) as

Jν ≡ nνS

∫
dv|v − V |{ΛΘ(εν(V ′′ − v′′))P (V ′′, t)φ(v′′, Tν ,mν)

−Θ(εν(V − v))P (V, t)φ(v, Tν ,mν)}, (5.2)

where v′′ and V ′′ represent the pre-collision velocities of the molecule vertical to
the piston and those of the piston, respectively, which lead to the correspond-
ing velocities v and V , and Λ ≡ 1/e2. Here, we have introduced the area of
the piston S, Maxwell distribution φ(v, T,m) ≡

√
m/2πT exp(−mv2/2T ), and

Heaviside function Θ(x) = 1(x ≥ 0) and Θ(x) = 0(x < 0) with εL ≡ −1 and
εR ≡ +1. P v

ν represents the one-dimensional momentum change of the piston
for each collision between the gas molecule of velocity v in ν side and the piston.

The Kramers-Moyal expansion of Eq. (5.1) results into

∂P

∂t
+

∂

∂V

Ffri

M
P =

∞∑
n=1

(−1)n

n!
∂n

∂V n

{
εnLA

L
n(V ) + εnRA

L
n(V )

}
P. (5.3)

Here we have introduced the small parameter εν ≡ mν/M , and

AL
n =

(
1 + eL
1 + εL

)n

vn+1
L nLSK

−
n

(
V

vL

)
, (5.4)

AR
n =

(
−1 + eR

1 + εR

)n

vn+1
R nRSK

+
n

(
V

vL

)
, (5.5)

(n = 1, 2, · · · ). We also define

K+
n (x) ≡

∫ x

−∞
dyφ̃R(y)(x− y)n+1, (5.6)

K−
n (x) ≡

∫ ∞

x

dyφ̃L(y)(y − x)n+1, (5.7)

where φ̃ν(ν = L or R) is the dimensionless VDF for each bath. Assuming the
symmetric property of the VDF φ̃ν(x) = φ̃ν(−x), K±

n (x) has the symmetric
property and the recurrence relation:

K+
n (−x) = K−

n (x), (5.8)

K±
n+2(x) = ±xK±

n+1(x) +
(
1 +

n

2

)
K±

n (x), (5.9)

whose derivations are straightforward. We should note that the Botlzmann-
Lorentz equation Eq. (5.1) is equivalent to the SDE driven by the state-
dependent compound Poissonian processes:

M
dV̂

dt
= Ffri(V̂ ) + FL(t; V̂ ) + FR(t; V̂ ), (5.10)

where F̂ν(ν = L or R) is the stochastic force acting on the piston due to the kick
from ν side of the piston, and V̂ denote the stochastic velocity of the piston. We
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assume that the stochastic forces F̂ν can be described by the state-dependent
compound white Poissonian process:

F̂ν ≡
∑

v

P v
ν (V̂ ) · ξ̂v

ν (t|V̂ ), (5.11)

P v
ν (V̂ ) ≡ 1 + eν

2
2ε2ν

1 + ε2ν
M(v − V̂ ), (5.12)

(ν = L or R), where ξ̂v
ν (t|V̂ ) is one-sided Poissonian noise whose probability is

equivalent to collision probability for gas molecules of the velocity between v
and v + dv on the piston:

λν
v ≡ dv|v − V̂ | ·Θ(εν(V̂ − v))nνAφ(v, Tν). (5.13)

Let us prove the equivalency between the stochastic equation of motion Eq.
(5.10) and the Boltzmann-Lorentz equation (5.1). See also Chapter 3. For an
arbitrary analytic function h = h(V̂ ), its differentiation dh(V̂ ) ≡ h(V̂ + dV̂ ) −
h(V̂ ) can be represented as

dh(V̂ ) =
∞∑

n=1

(dV̂ )n

n!
· ∂

nh

∂V n

∣∣∣∣
V =V̂

=
∞∑

n=1

1
n!

{∑
v

(
P v

ν

M
· dL̂v

L

)
+
∑

v

(
P v

ν

M
· dL̂v

R

)
+
F̂fri

M
dt

}n

· ∂
nh

∂V n

∣∣∣∣
V =V̂

=
∞∑

n=1

1
n!

∑
ν=L,R

{∑
v

(
P v

ν

M
· dL̂v

ν

)n
}
· ∂

nh

∂V n

∣∣∣∣
V =V̂

+ dt
F̂fri

M
· ∂h
∂V

∣∣∣∣
V =V̂

+o(dt), (5.14)

where we substitute dV̂ =
∑

v,ν(P v
ν · dL̂v

ν/M) + F̂fridt/M into the Taylor ex-
pansion of h and pick up only O(dt) terms. Here, we have introduced the
total differentiation dL̂v

ν of Lv
ν(t|V̂ ) ≡

∫ t

0
ξ̂v
ν (s|V̂ )ds (ν = L or R), noting that

(dL̂v
ν)n = O(dt), dL̂v

L · dL̂v
R = o(dt) and dL̂v

ν · dL̂v′

ν = o(dt) for v 6= v′. The
ensemble average and the partial integral of Eq. (5.14) leads to

∂P

∂t
= − ∂

∂V

{
Ffri

M
P (V, t)

}
+

∞∑
n=1

(−1)n

n!
∂n

∂V n

 ∑
ν=L,R

∑
v

(
P v

ν

M

)n

λν
vP


= − ∂

∂V

{
Ffri

M
P (V, t)

}
+

∞∑
n=1

(−1)n

n!
∂n

∂V n

[{
nLA

∫ ∞

V

dv

(
P v

ν

M

)n

|v − V |φ(v, TL)
}
P

+

{
nRA

∫ V

−∞
dv

(
P v

ν

M

)n

|v − V |φ(v, TR)

}
P

]
, (5.15)
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where we have used the martingale property of Itô product as 〈(P v
ν (V̂ )/M)n ·

dL̂v
ν〉 = 〈(P v

ν (V̂ )/M)n〉〈(dL̂v
ν)n〉 = (P v

ν (V )/M)nλν
vdt. The last equation in Eq.

(5.15) is well known to be derived through the Kramers-Moyal expansion of
the right-hand side of Eq. (5.1) [7]. Thus, Eq. (5.10) is equivalent to the
Boltzmann-Lorentz equation Eq. (5.1). In the macroscopic piston limit εL and
εR → 0 and in the absence of sliding friction, Eq. (5.10) is reduced to the
Langevin equation driven by a Gaussian noise without drift. To observe the
motion with non-zero average velocity, the finiteness of εL and εR necessary.

5.3 Fluctuating motion of adiabatic piston un-
der dry friction

We consider the case with mL = mR and p = nLTR = nRTR called the adiabatic
piston problem. We define the small parameter ε ≡ √εL =

√
εR.

Here, the piston is assumed to move along the container under the influence
of dry friction from the side walls

F̂fri ≡ −εF̄friffri(V̂ ), (5.16)
ffri(V ) = sgn(V ) (5.17)

where sgn(x) = x/|x| is the sign function [33–40], and F̄fri will be determined
later.

Let us derive the average velocity of the piston under dry friction. At first,
we derive the steady VDF for the piston, and then we derive the average velocity.
Truncating Eq. (5.3) at O(ε2), we obtain the Fokker-Planck-like equation for
P = P (V, t) up to O(ε2):

∂P

∂t
= ε

γ0

M

[
∂

∂V
{V + µ0vTesgn(V )}P +

v2
Te

2
∂2P

∂V 2

]
+ε2C

γ0

M

[
∂

∂V

V 2

vTe

P −
v3

Te

4
∂3P

∂V 3

]
+O(ε3). (5.18)

Here, the first two terms on the right-hand side of Eq. (5.18) proportional to the
first derivative term in Eq. (5.18) represents the force. Thus, the proportional
constant of the friction force in Eq. (5.16) can be determined as

F̄fri ≡ µ0γ0vTe
(5.19)

with γ0 ≡ γL + γR,

γν ≡ 2(1 + e)√
π

pS

vTν

(5.20)

(ν = L or R), the effective temperature Te ≡ (1 + e)
√
TLTR/2 and the friction

constant µ0. The steady state VDF Pss(V ) up to O(ε) can be readily obtained
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from Eq. (5.18):

Pss(V ) = (1 + εa1(V ) +O(ε2))P0(V ), (5.21)

P0(V ) ≡ 1
Z

exp
[
− M

2Te
(V 2 + 2µ0vTe |V |)

]
, (5.22)

a1(V ) ≡ C

{
−µ0sgn(V )

(
MV 2

Te
− 1
)

(5.23)

+
(
1− 2µ2

0

) V

vTe

− V 3

3v3
Te

}
,

C ≡
√
πTe

(
1√
TL

− 1√
TR

)
, (5.24)

where we have introduced the normalized constant Z ≡
√
πvTee

µ2
0erfc(µ0), It

should be noted that the restitution coefficient only appears through γ0 and Te.

Figure 5.2: The obtained steady state VDFs Eqs. (5.21) - (5.24) for µ0 = 1.0 and
e = 0.9 are verified through the simulation of Eq. (5.10). We average the data
over 1000 ensembles with the time average for 0 < t/t0 < 400. Purple triangles,
red squares and blue circles are data for TL/TR = 0.10, 1.0, 10.0, respectively,
where the corresponding theoretical curves are represented by solid lines and
dashed lines denote discontinuity at V = 0.

References [37–40] reports the existence of the discontinuity and the cusp
singularity in VDFs of a stochastic motion of the piston under dry friction.
As we expected, we obtain the consistent results with those in the previous
studies, i.e. there exists a discontinuity at V = 0 for TL 6= TR, and the cusp-like
singularity appears at V = 0 for TL = TR. The obtained singularity is close
to that in Ref. [38, 39], while the singularities appear at V 6= 0, in addition to
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V = 0 in Ref. [40]. We note that the amount of gap at V = 0 increases linearly
with µ0.

We numerically solve Eq. (5.10) for 0 < t/t0 < 400 and average the data
over 1000 ensembles, to obtain the data for VDF and compare it with Eq. (5.21)
in Fig. 5.2 for e = 0.9 and µ0 = 1.0. As can be seen from Fig. 5.2, it is obvious
that our theory precisely reproduces the results of the simulation.
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Figure 5.3: Reverse motion of the adiabatic piston against the friction constant
µ0 is verified for e = 0.9. We numerically solve Eq. (5.10) and take steady
state average for 0 < t/t0 < 400. The numerical data are obtained from the
ensemble average over 1000 samples. Purple triangles, red squares and blue cir-
cles are data for TL/TR = 0.10, 1.0, 10.0, respectively, where the corresponding
theoretical curves are represented by solid lines.

To examine our theoretical consideration below, we adopt the velocity Verlet
method for time integration of Eq. (5.10) with time interval dt/t0 = 0.01, where
we have introduced t0 ≡ x0/vTR , and x0 ≡ Mv2

TR
/pS. We discretize the jump

rates λν
v by replacing dv by ∆vν = vTν/50 and v by vi with −10vTν < vi < 10vTν

for ν = L or R and 1 ≤ i ≤ 1000, with the thermal velocity vT ≡
√

2T/M of
the temperature T . e = 0.9 and ε = 0.1 are fixed for our simulations.

In the absence of dry friction, it is known that the piston moves toward the
high-temperature side under the condition nLTL = nRTR and TL 6= TR. As will
be shown, however, the direction of the piston motion can be reversed under the
dry friction. Indeed, the averaged steady state velocity of the piston defined by
VSS ≡

∫
dV V Pss(V ) is given by:

VSS = Vad

{
1 + 4µ0

(
µ0 −

µ3
0

3
− 7

6
√
πeµ2

0erfc(µ0)
+

µ2
0

3
√
πeµ2

0erfc(µ0)

)}
+O(ε2), (5.25)
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where we have introduced Vad as the steady velocity of the piston without any
dry friction:

Vad ≡ ε
√
π

4
v2

Te

(
1
vTL

− 1
vTR

)
. (5.26)

The notable fact in Eq. (5.25) is that the direction of the piston motion is
changed around µ0 ' 0.46 (see Fig. 5.3).

The validity for Eq. (5.25) is verified through the direct simulation of Eq.
(5.10) and is shown in Fig. 5.3, where we average the data for 0 < t/t0 < 400
and the ensemble average is taken over 1000 samples. As can be seen in Fig.
5.3, Eq. (5.25) correctly predicts the accurate behavior of Eq. (5.10).

Through the expansion in terms of ε up to O(ε2), Eq. (5.10) under the
steady state average is reduced to

0 = −εγ0VSS + ε2
Cγ0

2vTe

〈
V 2
〉
SS
− ε2CF̄frif̌(µ0), (5.27)

where we have introduced the positive function

f̌(µ0) ≡
µ0

2
+
µ3

0

3
+

2− µ2
0

3
√
πerfc(µ0)eµ2

0
> 0. (5.28)

Here, the second term on the right-hand side of Eq. (5.27) is the force due to
MDD [156], and the direction of the steady friction force is opposite to MDD,
from which the change of direction of the piston motion originates. As the
friction force becomes larger, it can be shown that the sign of VSS is switched,
because

〈
V 2
〉
SS
> 0 and f̌(µ0) > 0. Thus, in contrast to systems without any

dry friction, the direction of the piston motion under the dry friction does not
correspond to that of the force due to MDD.

5.4 Roles of nonlinearity of sliding friction

We have discussed the inverse motion of the adiabatic piston under dry friction
and the origin of the inverse motion on the basis of the Boltzmann-Lorentz
equation in Sec. 5.3. One can ask whether the inverse motion is generic. Here,
we consider several types of velocity dependence of the side-wall friction [25] and
find that any nonlinear friction reverses the piston motion, while the linear one
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does not. We consider the following velocity dependences of friction Ffri(V ):

Dry friction : Ffri(V ) = −µ′
0pSsgn(V ), (5.29)

Velocity weakening + strengthening Ffri(V ) = −µ′
0pS (5.30)

×
{
1 + (V/vR − sgn(V ))2

}
sgn(V )

Dry + Viscous friction : Ffri(V ) = −µ′
0pS

{
V

vR
+ sgn(V )

}
,

(5.31)

Smoothed dry friction : Ffri(V ) = −µ′
0pS tanh

(
V

vR

)
, (5.32)

Viscous friction : Ffri(V ) = −µ′
0pS

V

vR
, (5.33)

where we have introduced a new dimensionless friction coefficient µ′
0. In Fig.

5.4, we plot the friction coefficient dependence of the average steady velocity of
the piston VSS fixing TL/TR = 10.0. It is remarkable that nonlinear frictions
such as dry (squares), weakening and strengthening (diamonds), dry and viscous
(piles), and smoothed dry (triangles) friction inverse the direction of the piston
motion, while linear friction (circles) does not.

Figure 5.4: Average velocity of the piston VSS against µ′
0. Nonlinear frictions

such as dry (squares), weakening and strengthening (diamonds), dry and viscous
(piles), and smoothed dry (triangles) friction inverse the direction of the piston
motion, while linear friction (circles) does not.

The absence of the inverse motion of a piston under linear friction can be
understood as follows. Let us write the side-wall friction as

Flin(V ) = −γlinV (5.34)
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where γlin represents the viscous friction coefficient. Taking the steady state
average of Eq. (5.10), we obtain

0 = −εγ0VSS + ε2
Cγ0

2vTe

〈
V 2
〉
SS
− γlinVss. (5.35)

Hence, the average velocity is written as

Vss =
Vad

1 + γlin/εγ0
, (5.36)

where the sign of Vss turns out to be the same as Vad. The remarkable difference
between Eqs. (5.27) and (5.35) is the third term on the right-hand side. The
third term in Eq. (5.27) depends on C, while the one in Eq. (5.35) does not.
We can conclude that the direction of piston motion depends on the amplitude
and the nonlinearity of the velocity dependence for the side-wall friction.

5.5 Fluctuation theorems under dry friction

Let us discuss the large deviation property [157] for the work done by the
system under dry friction. Fluctuation relation is one of the universal rela-
tions in non-equilibrium systems found in the last a few decades [158–162].
The fluctuation relation for frictionless granular systems has been reported re-
cently [163]. The fluctuation relations under dry friction are derived for the
work done by the non-fluctuating external system under the dry friction in
Ref. [166], and experimentally discussed in Ref. [30, 164, 165]. However, the
work done by the fluctuating gas under dry friction has not been investigated.
Here, we derive a fluctuation relation for the work done by the gas under
dry friction, considering the excess work defined by dŴ ′

L ≡ dŴL − F0V̂ dt,
dŴL/dt ≡

∑
v{M(V 2 − V ′′2)/2} · ξ̂v

L(t|V̂ ), with the pre-collisional velocity V ′′

and F0 ≡ 〈F̂L(V = 0)〉 = (1 + e)pS/{2(1 + ε2)} in terms of the perturbation of
small µ0, as shown in Appendix. A. Introducing the distribution for the excess
power P(pw, t) ≡ 〈δ(Ŵ ′

L(t)−pwt)〉, we obtain the fluctuation relation under dry
friction up to O(ε, µ0):

lim
t→∞

1
t

ln
P(pw, t)
P(−pw, t)

= ∆βepw +
F̄fri

pS
B(pw)pw

+O(ε2, µ2
0), (5.37)

where we have introduced the difference of inverse temperatures

∆βe ≡ 2
1 + e

(
1
TR
− 1
TL

)
, (5.38)

and the nonlinear function of pw

B(pw) ≡
√
vTL

vTe

√
C∗(pw)

(1 + e)Te
(5.39)

C∗2(pw) ≡ 1 + (T̃ 1/4 − T̃−1/4)2

1 + 2π(pw/εpSvTe)2/(1 + e)3
(5.40)
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Figure 5.5: The fluctuation relation under dry friction Eq. (5.37) is verified
through our simulation for µ0 = 0.1, e = 0.9 and t/t0 = 20.0, where theoretical
curves are represented by solid lines. The number of samples is 2.5× 105. Blue
circles in (a) and red squares in (b) are the numerical data for TL/TR = 10.0, 1.0,
respectively. The blue and red dashed lines are theoretical lines without dry
friction for TL/TR = 10.0, 1.0, respectively. The events satisfying pw < −pss

w for
TL/TR = 10.0 are so rare events that they could not be detected through our
calculation, while numerical data for TL/TR = 1.0 agree with the theoretical
curve for large |pw/p

ss
w |

with T̃ ≡ TL/TR. See Appendix A for the derivation of the fluctuation relation.
We solve Eq. (5.10) with µ0 = 0.1 and e = 0.9 for 0 < t/t0 ≤ 20.0 to verify
the validity of Eq. (5.37) as shown in Fig. 5.5 (a) for TL/TR = 10.0 and
(b) for TL/TR = 1.0, where the number of samples is 2.5 × 105. Blue circles
of Fig. 5.5 (a) and red squares of Fig. 5.5 (b) are the numerical data for
TL/TR = 10.0, 1.0, respectively, and the solid curves denote the corresponding
theoretical curves. The blue and red dashed lines are theoretical lines without
dry friction for TL/TR = 10.0, 1.0, respectively. Here we use the scaled pw by
the corresponding steady state value pss

w = 0.2099 for TL/TR = 10.0 and pss
w =

0.01281 for TL/TR = 1.0, respectively. We only plot the data for |pw/p
ss
w | < 1

for TL/TR = 10.0 because the events satisfying pw < −pss
w are so rare events

that they could not be detected through our calculation. On the other hand,
numerical data for TL/TR = 1.0 agree with the theoretical curve even for large
|pw/p

ss
w |.

5.6 Summary and discussion

In this chapter, we have clarified the roles of nonlinear sliding friction in the fluc-
tuating motion of an adiabatic piston surrounded by two thermal temperatures.
Through the analysis of the Boltzmann-Lorentz equation Eq. (5.1) under dry
friction, we have found the singularities only at V = 0 as those in Ref. [38, 39],
while they are different from those in Ref. [40]. VDF of a fluctuating piston has
a cusp-like singularity for TL = TR and a discontinuity at V = 0 for TL 6= TR,
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as in Eqs. (5.21) - (5.24) and Fig. 5.2. For dry frictional case, we have obtained
the friction dependence of the velocity of the piston motion in Eq. (5.25), whose
direction is changed above the threshold of the friction const µ0, as in Fig. 5.3.
The change of the direction of the piston motion has not been reported in the
previous studies for the fluctuating piston under dry friction [38–40]. We have
clarified the role of nonlinearity of sliding friction, by considering the various
velocity dependences of the friction and have found that an arbitrary nonlinear
friction can reverse the motion of the piston, while the linear (viscous) friction
cannot. We have also demonstrated that the conventional fluctuation relation
for the fluctuating work is modified due to the existence of dry friction.
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Chapter 6

Non-equilibrium Brownian
motion as a non-equilibrium
probe

Abstract

The dynamics of a rotor under viscous or dry friction is investigated as a non-
equilibrium probe of a granular gas numerically and analytically. In Sec. 6.2,
we briefly explain the theory on a frictionless rotor introduced in Ref. [94]. We
explain the setup of our simulation in Sec. 6.3 and show that the VDF for
granular gases is cylindrically symmetric. In Sec. 6.4, we briefly explain the
theoretical setup to derive the inverse formula for the cylindrically symmetric
granular gas [92,93]. In Sec. 6.5, we show the existence of formulas between the
VDF for the gas and the angular VDF for a rotor under a viscous friction around
a rotating axis. The validity of these formulas is also numerically verified in this
section. In Sec. 6.6, we discuss the position dependence of the viscous rotor.
In Sec. 6.7, we examine the angular VDF for a dry frictional rotor using the
numerical VDF for the granular gas under gravity. In Sec. 6.8, we conclude this
paper with some remarks. In Appendix. B, we examine the rotor under viscous
friction in an elastic gas without gravity as a benchmark test of our simulation
and formulation, where the angular VDF for the rotor is analytically obtained.
In Appendices C.1 and D.1, we show the detailed calculation of our analytic
formulas for the viscous and dry frictional rotors, respectively. We explain the
detailed procedure to apply our formulas to the viscous and dry frictional rotors
in Appendices C.2 and D.2, respectively.
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6.1 Introduction

In the previous chapter, we have rectified the motion of the piston from the
temperature difference between two gases, where the fluctuations of the left and
right gases are different. In this chapter, we consider a symmetric rotor in a
single granular gas to clarify the role of the rotor as a non-equilibrium probe.
We ask a question: can we rectify useful quantities from the fluctuating motion
of the rotor? The molecular dynamics (MD) simulation of a realistic granular
rotor is performed to demonstrate the role of a rotor as a probe to measure the
VDFs of vibrating granular beds [29–32,167–169]. We perform an event driven
MD simulation of a rotating rotor around a fixed axis in a vertically vibrated
granular gas under gravity as in Ref. [60].

6.2 Theory on a frictionless granular rotor

Before considering the motion of the rotor under the axial friction, let us re-
view the theory on a frictionless granular rotor [94]. The fluctuating motion of
the arbitrarily shaped rotor without the axial friction can be described by the
following Boltzmann-Lorentz equation [3, 7, 8, 94–97]:

∂P

∂t
=

∫ ∞

−∞
dy {Wεrot(ω − y; y)P (ω − y, t)−Wεrot(ω; y)P (ω, t)} , (6.1)

where the transition rate Wεrot is introduced as

εrotWεrot(ω; y) ≡ ρh

∫
surf

d%

∫
dvφ(v)Θ(Vn(%)− vn)

×|Vn(%)− vn|δ
(

y

εrot
−∆ω̄

)
, (6.2)

V (%) ≡ ωez × r(%), (6.3)

∆ω̄ ≡ (1 + e)
g(%)
RI

Vn − vn

1 + εrotg2(%)
, (6.4)

g(%) ≡ rt(%)
RI

. (6.5)

Here, t(%) ≡ ez ×n(%), RI ≡
√
I/M are introduced, where the subscript n and

t represent the normal and tangential component of the corresponding vector
variable, respectively. n and t are normal and tangential unit vector on the
surface of the rotor, respectively(Fig. 6.1). εrot ≡ m/M represents the small
parameter with the mass of the rotor M and that of a granular particle m. The
restitution coefficient between rotor and particles are represented by e. The
integral

∫
surf

d% represents the integral along the surface of the rotor (Fig. 6.1),
which depends on the shape of the rotor. Note that such a set of equations
is widely used in systems, such as granular gases activated by a white noise
thermostat [72,170–174].
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Figure 6.1: Schematic picture of an arbitrary shaped rotor

From next section, we analyze the dynamics of the rotor in vibrating granular
beds to derive the relationship between the angular VDF of the rotor under
viscous or dry friction and the VDF of the granular gas [92,93]. We demonstrate
that the angular VDF of the rotor is correctly predicted from the VDFs of the
granular gas, and is vice versa using our derived formulas. Because the motion
of the rotor in vibrating beds can be easily observed in experiments, our method
is, in particular, useful in the following two situations: Experiments for both
vibrating granular gases deep inside a three dimensional container and the gases
in an opaque container. Furthermore, we demonstrate that our formulas are
valid even for the rotor near the boundary of the container. We thus indicate
that the granular rotor under viscous or dry friction can be used as a local probe
for a realistic granular gas.

6.3 Simulation Setup

A schematic figure of our setup is illustrated in Fig. 6.2. We prepare N = 100
frictionless grains of diameter d = 0.02

√
A and mass m under gravity g in

a quasi-two-dimensional container (area A = L2
box, height Hbox = 0.1Lbox).

The VDF is different from the Gaussian for inelastic grains under gravity and
vibration (eg < 1). Following Refs. [175, 176], we adopt eg = 0.71 for inelastic
grains, which is the effective restitution coefficient for low-density polyethylene.
The restitution coefficient between grains and the side wall is chosen to be
identical to that for collisions between grains. We do not consider neither the
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rotational motion of grains nor the tangential contact force between grains in
this paper because the effect of the tangential friction of spherical grains can be
absorbed into the effective normal restitution coefficient if the duration time of
grains is negligible [177–180].

Probe

Gravity

Vibration

Figure 6.2: Schematic picture of our simulation.

The origin of the system in the laboratory frame (x, y, z) = (0, 0, 0) is chosen
to be the bottom center of the container at t = 0. We introduce a thin rotor
of mass M rotating around the fixed axis (x, y) = (x0, y0) under the frictional
torque N̂fri(ω̂) with width w = 0.1Lbox and height h = Hbox − d (Fig. 6.3 (a)
and (b)). We introduce the restitution coefficient e between the rotor and grains
and adopt e = eg = 0.71. The density of the granular gas is ρ = N/h(Lbox−d)2.
We introduce the typical velocity of grains as v0 =

√
gLbox. We assume that

the rotor is sufficiently macroscopic, i.e., εrot = 0.01 � 1. The local VDF
for the granular gas is measured near the rotating axis in the region of r =√

(x− x0)2 + (y − y0)2 < robs ≡ 2w and z0 < z < z0 +Hbox.
Rough walls are introduced both on the top and the bottom of the con-

tainer to distribute the energy into the horizontal direction. (See Fig. 6.3
(b).) When a grain collides against the rough wall, the post-collisional direc-
tion n′

⊥ is randomized, while the kinetic energy is conserved during the colli-
sion. The scattered angles (θs, φs) are chosen from uniform random variables
in 0 ≤ φs ≤ π/2, 0 ≤ θs ≤ 2π. (See Fig. 6.3 (c).) Note that the probabil-
ity density per a unit solid angle for small φs is higher than that for large φs,
while that for the horizontal direction θs is uniform. The rough walls corre-
spond to the walls where sandpapers are glued [181]. We inject energy into
the granular gas by vertically vibrating the container in a piece-wise manner
with a constant speed [182]. Figure 6.3 (d) illustrates the time evolution of the
bottom wall z = z0. The direction of the container motion is changed every
twall = 0.1Lbox/v0. The maximum height of the bottom is zmax = 0.02Hbox.
It should be stressed that the rough wall is different from the thermal wall,
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Figure 6.3: Schematics of (a) the top view and (b) the side view of our simu-
lation. The rotor rotates around a fixed axis (x0, y0), and the origin O is the
center of the container. Note that the size of the rotor is exaggerated. (c) The
rough wall reflects the grain in random direction. (d) The container is vibrated
vertically in a piece-wise linear manner. The time evolution of the bottom of
the container is shown.

where the magnitude of velocity is randomly chosen from the Maxwell distri-
bution function [183]. See Appendix B for the results of a simulation of grains
associated with a thermal wall.

We here emphasize that the VDF for the gas is cylindrically symmetric. We
observe the VDF in the two regions; the areas (i) and (ii). Here, the center of the
area (i) is (x, y) = (0, 0), and that of the area (ii) is (x, y) = (−Lbox/4,−Lbox/4)
(Fig. 6.4 (a)). The VDFs φα for α = x, y, z directions are shown in Fig. 6.4
(b), where the data are taken in the area (i). We note that VDFs even for
horizontal direction deviate from Gaussian (dotted line) exp(−x2/2)/

√
2π with

x = vα/v0. Because the rotor rotates around the vertical axis, the axis parallel
to the z-axis, and the rotor cannot detect VDF for the z direction in our setup,
we do not consider the VDF for vz. Thus, we formulate the inverse formula for
cylindrically symmetric gases on the basis of the Boltzmann-Lorentz equation.
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Figure 6.4: (a): The area (i) is the cylindrical area with the radius robs around
x = 0, y = 0, and the area (ii) is the one around x = −Lbox/4, y = −Lbox/4.
(b): VDFs for α = x, y, z directions are shown. The data are taken in the area
(i). VDFs for horizontal direction are different from Gaussian (dotted line).
VDF in the z direction is asymmetric due to the gravity. (c): The VDFs for
v =

√
v2

x + v2
y in the areas (i) and (ii) are shown as open squares and filled

circles, respectively. It should be noted that the VDF for the area (i) differs
from that in the area (ii) due to the wall. Our observed VDFs cannot be fitted
by the theoretical VDFs in Ref. [72] represented by the chain line and the dashed
line for the area (i) and (ii), respectively.

We have confirmed that the VDFs are invariant whether the rotor is present or
not. In Fig. 6.4 (c), the numerical data of VDFs for v ≡

√
v2

x + v2
y are shown

for both the areas (i) and (ii). It should be noted that the VDF in the areas
(i) (open squares) differs from that in the area (ii) (filled circles) because of the
influence of the wall. In this paper, we consider only the area (i) in Secs. 6.5
and 6.7, while we discuss the data for both area (i) and (ii) in Sec. 6.6.

Let us compare our obtained VDFs with that for granular gases activated
by a white noise thermostat [72], which is phenomenologically used for the
analysis of vibrating granular gases [76]. We note that our observed VDFs
cannot be fitted by that in Ref. [72], which is written as φNE(v) = (1 +
a2S2(v2/v2

th))φG(v/vth)/v2
th with φG(x) ≡ exp(−x2/2)/2π, a2 = 16(1− eg)(1−

2e2g)/{185− 153eg + 30(1− eg)e2g}, and S2(x) = x2/2− 2x+ 1. Here, vth corre-
sponds to a fitting parameter in our setup. The fitting results are shown in Fig.
6.4 (c) and vth/v0 = 0.935587 and vth/v0 = 0.900656 for the areas (i) (chain
line) and (ii) (dashed line), respectively.

6.4 Theoretical starting point

We explain our theoretical starting point for the cylindrically symmetric granu-
lar gases. We only consider the two-dimensional VDF φ = φ(vx, vy) for grains to
calculate the angular VDF for the rotor. The time evolution of the PDF of the
angular velocity of the rotor P = P (ω, t) can be described by the Boltzmann-
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Lorentz equation [3, 7, 8, 94–97]:

∂P

∂t
+
{
∂

∂ω
NfriP

}
=

∫ ∞

−∞
dy {Wεrot(ω − y; y)P (ω − y, t)

−Wεrot(ω; y)P (ω, t)} , (6.6)

εrotWεrot(ω; y) = ρh

∫ 2w

0

d%

∫ ∞

−∞
dvxdvyφ(vx, vy)Θ(Vn(%)− vn)

×|Vn(%)− vn|δ
(

y

εrot
−∆ω̄

)
, (6.7)

We have introduced % as a coordinate variable along the surface of the rotor,
running over 0 < % < 2w [94]. According to Chapter. 3 and Refs. [92, 93],
Eq. (6.6) is reduced to a Langevin equation for Ω ≡ ω/εrot driven by the state-
independent non-Gaussian noise in the large system size limit εrot → 0 when
the axial friction is sufficiently strong. In the following, we consider the two
types of the axial friction, the viscous friction Nfri = −γω and the dry friction
Nfri = −∆sgn(ω) [33–40] and discuss the steady state distribution Pss(Ω) ≡
limt→∞ P(Ω, t) with P(Ω, t) ≡ εrotP (εrotΩ, t).

6.5 Granular Rotor under Viscous Friction

In this section, we consider the role of the rotor under viscous friction Nfri =
−γω as a probe of the granular gas. In Sec. 6.5.1, we analytically derive forward
and inverse formulas, which connect the granular VDF with the rotor PDF. In
Sec. 6.5.2, we verify the validity of the forward formula at first, where we
estimate Pss(Ω) using the numerical data for φ(v). Next, in Sec. 6.5.3, we solve
the inverse problem, i.e., we derive the granular VDF φ(v) from a given Pss(Ω),
which enables us to infer the properties of granular gases from the motion of
the probe, i.e., the rotor.

6.5.1 Analytic formula for PDF of the rotor

As is shown in Chapter 3 and Ref. [151], the steady angular VDF in the Fourier
transform P̃ss(s) ≡

∫∞
−∞ dΩeisΩPss(Ω) can be expressed as

P̃ss(s) = exp
[∫ s

0

I

γs′
Φ(s′)ds′

]
, (6.8)

where the cumulant generating function Φ(s) ≡
∑∞

l=1Kl(is)l/l! =
∫∞
−∞W(Y)(eiYs−

1) with Kl ≡
∫∞
−∞ dYY lW(Y) and the scaled transition rate W(Y) can be rep-

resented by an integral transform of φ(v) for the cylindrically symmetric case:

Φ(s) = −2ρhwv0
s̃2w̃2

∫ ∞

0

dxφ̃(x) {−(w̃s̃x)πH0(w̃s̃x)

+2(w̃s̃x)2
}
. (6.9)
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Here, we have introduced dimensionless variables w̃ = (1+e)w/2RI , s̃ = sv0/RI , x =
v/v0, and φ̃(x) = v2

0φ(v0x). We have used the Struve function Hν(x) with ν = 0
defined by Eq. (C.6) [185]. See Appendix C.1 for the detailed derivation. We
note that Eq. (6.9) is valid not only for the linear (viscous) frictional rotor but
also for the nonlinear (dry) frictional rotor. Substituting Eq. (6.9) into Eq.
(6.8), we obtain

γ̃

πk

{
k3 d

dk
lnP̃ss

(
k

w̃

)
+Bk2

}
=
∫ ∞

0

dxxφ̃(x)H0(kx),

(6.10)

where we have introduced B = (2/γ̃)
∫∞
0
dxx2φ̃(x), a dimensionless variable

k ≡ w̃s̃, and a scaled friction coefficient γ̃ ≡ γ/(2ρhwIv0). The integral on
the right-hand side of Eq. (6.10) is known as the Struve transformation, and
its inverse transformation is the Y transform, which are kinds of the Bessel
transformations [186]. Introducing the Neumann function Nν(x) with ν = 0
[185], we obtain the inverse estimation formula:

φ̃(x) =
∫ ∞

0

Gvis(k)N0(kx)kdk, (6.11)

Gvis(k) ≡ γ̃

πk

{
k3 d

dk
lnP̃ss

(
k

w̃

)
+Bk2

}
. (6.12)

The VDF of the granular gas can be determined from Eqs. (6.11) and (6.12)
only through the observation of the rotor dynamics. This implies that the rotor
is regarded as a thermometer for the granular gas with the aid of the inverse
formula Eqs. (6.11) and (6.12). The constant B in Eq. (6.12) can be determined
numerically by the condition limk→∞Gvis(k) = 0.

6.5.2 Forward problem for viscous rotor

Before considering the inverse problem, we discuss the forward problem, i.e.,
the determination of the PDF for the rotor from the VDF for the granular gas.
We verify the validity of the formulas (6.8) and (6.9) using the numerical data
of the VDF φ(v) for the granular gas under gravity. In the following numerical
simulation, we adopt γ/mLboxv0 = 2.0, which corresponds to γ̃ = 1.15248. In
Fig. 6.5 (a), we plot Pss(Ω) by the solid line on the basis of Eqs. (6.8) and (6.9)
and the numerical data for φ(v) and the results of the MD simulation (circles).
The agreement between the theory and the simulation is good except for the
point near Ω = 0, where the numerical error would be decreased by smaller
bin-width for φ(v). We adopt the bin-width of the numerical histogram for φ(v)
as 5.0 × 10−3v0. See Appendix C.2.1 for the detailed procedure to obtain the
solid line in Fig 6.5 (a).

6.5.3 Inverse problem for granular gas

In this subsection, we show that the VDF for the granular gas can be inferred
only through the numerical data of a steady distribution for the angular velocity
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Figure 6.5: The demonstration of the applicability of our formulas (6.8)-(6.12)
under viscous friction on (a) the forward and (b) the inverse estimation prob-
lems. The Fourier transform of Eq. (6.8) is shown as the solid line (a), which
agrees with the directly measured MD data. (b) Our formula (6.11) represented
by open squares are compared with the numerical data for the VDF φ(v) near
the rotor (filled circles) We can successfully estimate the VDF for the granular
gas only observing the angular VDF for the rotor. Note that there exists the
numerical error for large v/v0.

of a frictional rotor by using the formula Eq. (6.11) associated with Eq. (6.12).
The result for the inverse formula in Eqs. (6.11) and (6.12) is shown in Fig.

6.5 (b), where the parameter B is estimated as B = 0.365556 and we have used
the bin-width 8.660211 × 105v0/RI for PSS . The dotted line is vφNE(v), and
our formula (6.11) represented by open squares correctly predicts the numerical
data for the VDF φ(v) near the rotor (filled circles). We adopt the bin-width
for Pss as 8.660211×10−5v0/RI . Although numerical oscillation exists for large
v/v0, our estimation for the granular bath based on Eq. (6.11) agrees well with
the directly measured VDF of granular particles in the MD simulation. This
implies that the inverse formula (6.11) supplemented by Eq. (6.12) enables us
to use the motion of the rotor as a non-equilibrium thermometer. See Appendix
C.2.2 for the detailed procedure to obtain the estimated VDF.

6.6 Position dependence of the rotor

We now discuss the utility of the rotor as a local non-equilibrium probe. In Sec.
6.5.3, we have already demonstrated that the VDF for the surrounding gas in
the area (i) can be inferred from the angular VDF for the viscous rotor Pss.
Here, we discuss whether we can infer the local VDF in the area (ii) from the
motion of the rotor using Eqs. (6.11) and (6.12).

In Fig. 6.6, we show that the VDF in the area (ii) can be also inferred from
the angular VDF of the rotor. The estimated data and the directly measured
data are represented by squares and circles, respectively. See also Appendix
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Figure 6.6: The demonstration of the inverse formula for the local VDF in
the area (ii). Although the accuracy is a little worse than that in Fig. 6.5,
the estimated data (squares) correctly predicts the direct measurement data
(circles).

C.2.2 for the detailed procedure to obtain the estimated φ(v). Here, the param-
eter B is estimated as B = 0.40278. There also exists the numerical oscillation
for large v/v0. Although the accuracy is not as good as Fig. 6.5 (b), the es-
timated data are consistent with those obtained by the direct measurement.
The reason for the small discrepancy would be the violation of the cylindrical
symmetry because of the influence of the wall.

6.7 Granular Rotor under Dry Friction

We, now, consider a rotor under dry friction Nfri = −∆sgn(ω), because real
experimental rotors are influenced by dry friction [33–40]. In Sec. 6.7.1, we
derive an analytic formula for the angular VDF of the rotor, and verify its
validity in Sec. 6.7.2. Note that we here only study the forward problem on the
basis of the perturbative method developed in Ref. [93, 95].

6.7.1 Analytic formula for PDF of the rotor

The steady angular VDF Pss(Ω) can be obtained perturbatively in terms of
1/∆̃′ with ∆̃′ ≡ ∆(1 + e)/(εrotIρhv2

04π)� 1. The first-order solution in terms
of 1/∆̃′ is known as the independent kick model, which is originally introduced
in Ref. [95] and can be systematically derived in Refs. [92, 93]. Introducing
the Bessel function Jν(x) [185], P̃ss for the rotor under the dry friction can be
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rewritten as:

P̃ss

(
k

w̃

)
= 1 +

w̃2

k2

1
∆̃′

[
1
2π

+ C1k
2 −Gdry(k)

]
+O(1/∆̃

′2), (6.13)

Gdry(k) ≡
∫ ∞

0

dxxφ̃(x)J0(kx), (6.14)

where we have introduced C1 = −
∫∞
0
dxx3φ̃(x)/4. See Appendix D.1 for the

detailed derivation.

Figure 6.7: Pss(Ω) for the dry frictional rotor is calculated using the VDF
represented (the solid line in (a)). The steady state angular VDF for the dry
frictional rotor is shown in (b). The squares and the solid line are histogram
for MD and the Fourier transform of Eq. (6.13), respectively. Our observed
histogram in MD simulation can be correctly predicted by the Fourier transform
of Eq. (6.13)

6.7.2 Forward problem for dry frictional rotor

Now, let us examine whether Eqs. (6.13) and (6.14) are consistent with the re-
sult of MD. For the MD simulation, we adopt ∆/mv2

0 = 20.0, which corresponds
to ∆̃′ = 31.36531. The bin-width for Pss is set to be 8.660211 × 10−5v0/RI .
As shown in Fig. 6.7 (b), the obtained PDF Pss(Ω) in the MD simulation is
correctly predicted by the Fourier transform of Eq. (6.13) using the numerical
data of VDF for the granular gas φ(v) (Fig. 6.7 (a)). We have also checked
that the VDF for the granular gas is invariant even if we change the frictional
torque Nfri of the rotor. We stress that the VDF of the granular gas obtained
in MD cannot be fitted by that activated by the white noise thermostat [72].
In Fig. 6.7 (b), the squares and the solid line are histograms for MD and the
Fourier transform of Eq. (6.13), respectively. For a given VDF of the granu-
lar gas, our framework agrees with the results of the MD simulation without
introducing any fitting parameters. It should be noted that one can find the
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small discrepancy between the theoretical result and the data for large ΩRI/v0,
because the independent kick model is correct only for small ΩRI/v0. See the
detailed implementation of Eqs. (6.13) and (6.14) in Appendix. D.2.

We here discuss the difficulty for the inverse estimation problem under dry
friction in the present theoretical analysis. A possible reason is as follows:
Although Eq. (6.13) can be formally solved in terms of φ̃, the formal inverse
formula is practically useless because the independent kick model under dry
friction is only valid for small ΩRI/v0 and the inverse Fourier transformation of
Eq. (6.13) does not work well. Indeed, the exponential tail is reported for the
dry frictional rotor for large ΩRI/v0 in Ref. [93], which cannot be captured by
the independent kick solution.

6.8 Summary and Discussion

We have shown the role of a granular rotor as a local non-equilibrium probe
through the MD simulation of the rotor in vibrating granular beds under grav-
ity (Figs. 6.2 and 6.3). We have approximately observed the cylindrically sym-
metric and spatially inhomogeneous VDFs (Fig. 6.4). We have formulated the
inverse formula (6.11) in cylindrical coordinates to apply the MD simulation of
a realistic viscous rotor. Starting from the Boltzmann-Lorentz equation (6.6),
we have derived an analytic result Eq. (6.11) supplemented by Eq. (6.12) for
the viscous frictional rotor. Using Eq. (6.11), we have numerically calculated
the angular VDF for the rotor from the data of VDF for the granular gas near
the rotor, and vice versa in Fig. 6.5. Furthermore, we have demonstrated that
our inverse formula can be used even if the location of the rotor is different from
the center of the container as shown in Fig. 6.6. Thus, the granular rotor is
useful as a local probe for non-equilibrium baths.

For a dry frictional rotor, we have considered only the forward problem, and
the result agrees with the MD result, as shown in Fig. 6.7. In other words,
we cannot solve the inverse problem for the dry frictional rotor. To derive an
alternative valid inverse formula for the dry frictional rotor, we expect that an
appropriate interpolation is necessary between Eq. (6.13) and the exponential
tail of the VDF for the rotor.
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Chapter 7

Efficiency at maximum
power output for a passive
piston

Abstract

We study the efficiency at MP for a passive engine, which is an idealized model
of internal combustion engines without mechanical controls. We consider a hard
core gas confined by a massive piston in a chamber, where the piston freely moves
in one-direction by the pressure difference (See Fig. 7.1). We use the molecular
dynamics (MD) simulation of hard core gases to examine a theoretically derived
efficiency at MP on the basis of an effective model, which we call stochastic
mean field model (SMF). We explain our setup and operation protocol for the
temperature of the thermal wall Tbath in Sec. 7.2. We introduce SMF in Sec.
7.3 to analyze the power and efficiency. We examine the validity of SMF in Sec.
7.4 comparing the time evolution of MD simulation and that of SMF. In Sec.
7.5, we obtain the efficiency at MP for our passive engines containing dilute hard
core gases theoretically, which is close to the CNCA efficiency in the massive
piston limit. We also find that the efficiency at MP for moderately dense gases
is smaller than the CNCA efficiency even in the linear non-equilibrium regime.
In Sec. 7.6, to clarify the efficiency in the linear non-equilibrium regime, we
derive the Onsager matrix explicitly. We clarify the finite density effect for the
efficiency and stress the importance of the heat flux when we attach a bath at
Tbath on the efficiency at MP in this section. We discuss the difference between
our results and previous works in Sec. 7.7 and conclude this chapter with some
remarks in Sec. 7.8. In Appendix E, we review the kinetic theory of both elastic
and inelastic hard core gases. In Appendix F, we consider the velocity auto-
correlation of the piston attached to a dilute stationary gas. In Appendix G,
the definition of the work and heat for our system is discussed and the effect of
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the sidewall-friction on the piston is discussed in Appendix H.

7.1 Introduction

Up to now, we have examined the tracer motion attached to steady state gases.
In this chapter, we consider the motion of the piston attached to a hard core
gas under cyclic heating and cooling processes. The aim of this chapter is to
clarify the efficiency at MP for the passive engine, which is an idealized model of
internal combustion engines without mechanical controls. We consider a hard
core gas confined by a massive piston in a chamber, where the piston freely
moves in one-direction by the pressure difference (See Fig. 7.1). We use the
MD simulation of hard core gases to examine a theoretically derived efficiency
at MP on the basis of an effective model, which we call stochastic mean field
model (SMF).

Figure 7.1: Schematic picture of our setup, where N identical hard core particles
are enclosed in a container partitioned by an adiabatic piston of mass M at
x = X̂. The density nout and the temperature Tout for the outside gas x > X̂
are kept to be constants. The temperature Tbath of the thermal wall at x = 0
is controlled by an external agent, while thermodynamic quantities such as the
density n̂in and the temperature T̂in fluctuate in time.

Because the engine we consider is an internal combustion engine, the max-
imum efficiency is smaller than the Carnot efficiency. Our study is relevant
from the following two reasons. Firstly, we can find many situations, where the
direct mechanical control of a piston is difficult. For example, the structure
of internal combustion engines is usually too complicated to control inside me-
chanically [103]. Therefore, we need to clarify the effect of the uncontrollable
motion of a piston on the efficiency. Secondly, the study on passive engines is
important even for finite time thermodynamics. In the absence of mechanical
control of a piston or a partitioning wall, heat flow when we attach a thermal
wall is inevitable. Because heat flow from a reservoir is not usually taken into
account in conventional finite time thermodynamics, it is important to verify
whether the existing theoretical results should be changed, even if such heat

63



flow exist [107–126]. Indeed, we will show that conventional results are only
valid for our system when the heat flow is negligible as in dilute gases. Thus,
we believe that the detailed analysis of our system which is the simplest passive
engine from a thermodynamic point of view is important.

7.2 Setup

In our system, N hard core particles of each mass m and diameter din are en-
closed in a three-dimensional container partitioned by an adiabatic piston of
mass M and the area A on the right side of x-direction, a diathermal wall at-
tached with a thermal bath on the left side of x-direction and four adiabatic
walls on the other directions (Fig. 1). We assume that adhesion between par-
ticles and the walls of the container as well as the one between particles can
be ignored. The piston is assumed to move in one dimension without any side-
wall friction. Post-collision velocity (v′, V ′) and pre-collision velocity (v, V ) in
x-direction for a colliding particle and the piston are related as:

v′(v, V ) = v − 1
m
Pv, (7.1)

V ′(v, V ) = V +
1
M
Pv, (7.2)

where the contribution from the horizontal motion of particles to the wall is
canceled as a result of statistical average. Here, Pv = Pv(V ) ≡ M(V ′ − V ) =
(1 + e)mM(v − V )/(m + M) represents the momentum change of the piston
because of the collision for the particle of velocity v, where e is the restitution
coefficient between the particles and the piston. The reason why we introduce
the restitution coefficient is that the wall consists of a macroscopic number of
particles and part of impulses of each collision can be absorbed into the wall as
the excitation of internal oscillation.

We adopt the Maxwell reflection rule for a collision between a particle and
a diathermal wall attached with the bath at Tbath. The post-collisional velocity
v′ = (v′x, v

′
y, v

′
z) toward the wall at x = 0 is chosen as a random variable obeying

the distribution

φwall(v′, Tbath) =
1
2π

(
m

Tbath

)2

v′x exp

[
− mv′2

2Tbath

]
, (7.3)

whose domain is given by 0 < v′x <∞ and −∞ < v′y, v
′
z <∞.

Let us consider a heat cycle for heating Tbath = TH > Tout and cooling
Tbath = TL = Tout processes (Fig. 7.2). Initially, the enclosed gas and the gas
outside are in a mechanical equilibrium state, which satisfies P̂in = Pout and
T̂in = Tout = Tbath. At t = 0, we attach a heat bath at TH on the diathermal
wall. For 0 < t < tc, Tbath is kept to be TH (Fig. 7.2 (a)), and at t = tc, Tbath

is switched to be TL simultaneously, and is kept to be this state until t = 2tc.
Then, we again replace the bath at TL by the one at TH simultaneously (Fig.
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Figure 7.2: The operation protocol. We attach the heat bath TH on the diather-
mal wall at t = 0. (a) For 0 < t < tc, Tbath is kept to be Tbath = TH, and at
t = tc, Tbath is switched to be TL simultaneously, and (b) Tbath is kept to be
this state until t = 2tc. Then, we again replace the bath by TH simultaneously.
After repeating the switching of Tbath, the heat cycle reaches a steady cycle.

7.2 (b)). After repeating the switching and attaching of the baths, the heat
cycle reaches a steady cycle. It should be noted that the enclosed gas is no
longer thermal equilibrium during the cycle. During the operation, we ignore
the time necessary for the switching the heat bath. The finite switching time
only lowers the power but does not affect the efficiency of the cycle and what
the maximum-power-output process is.

In this paragraph, we explain some additional remarks in the MD simulation.
We assume that particles are colliding elastically each other and with side walls.
The collision rule between the piston and a particle is given by Eqs. (7.1) and
(7.2). We introduce typical length and time scale as Xini ≡ NTout/PoutA and
t0 ≡ Xini

√
M/Tout for later convenience. The number of particle N = 200 is

fixed through our simulation. The collisional force from outside the piston is
modeled by F̂out as will be defined in Eq. (7.6).

7.3 Stochastic mean field model

Let us introduce the stochastic mean field (SMF) model to describe the dynam-
ics of the piston and the energy balance of our system by using two independent
stochastic variables: fluctuating density n̂in(t) = N/AX̂(t) and fluctuating tem-
perature T̂in(t). Here, n̂in(t) and V̂ ≡ dX̂/dt satisfy the stochastic equations:

dn̂in

dt
= − n̂in

X̂
V̂ , (7.4)

M
dV̂

dt
= F̂in + F̂out, (7.5)

where the stochastic force F̂ν(ν = in, out) is introduced as

F̂ν ≡
∑

v

Pv · ξ̂v
ν (t|V̂ , n̂ν , T̂ν). (7.6)
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Here, ξ̂v
ν (ν = in, out) denotes Poissonian noise of the unit amplitude whose

event probability is given by

λ̂
′v
ν ≡ λ̂v

ν

{
1 + 4Φ̂g0(Φ̂)

}
, (7.7)

λ̂v
ν ≡ dv|v − V̂ |Θ[εν(V̂ − v)]n̂νφ0(v, T̂ν), (7.8)

where we have introduced the radial distribution function at contact g0 [191],
εin = −1, and εout = +1. The symbol “ · ” in Eq. (7.6) represents Itô type
stochastic product [7, 8]. Θ(x) is Heaviside function satisfying Θ(x) = 1 for
x ≥ 0 and Θ(x) = 0 for x < 0. The density and temperature for the gas outside
are kept to be constants in time, i.e., n̂out ≡ nout and T̂out ≡ Tout. We note that
a set of Eqs. (7.5) and (7.6) is an extension of the SDE discussed in Chapter
5 toward a finite density hard core gas when the density and the temperature
change in time. We adopt the equation of state for hard core gases of volume
fraction Φ̂ ≡ n̂inπd

3/6 given by [192]

P̂in = n̂inT̂in(1 + 4Φ̂g0(Φ̂)). (7.9)

Next, we propose the time evolution for T̂in. The differential of the internal
energy for the gas Ûin ≡ 3NT̂in/2 is given by

dÛin = dQ̂wall + dQ̂cond + dÊpis, (7.10)

dQ̂wall

dt
≡ An̂in(Tbath − T̂in)

√
2T̂in

πm
, (7.11)

dÊpis

dt
≡

∑
v

m

2

{
v′

2(v, V̂ )− v2
}
· ξ̂v

in(V̂ , n̂in, T̂in),

(7.12)

dQ̂cond = −45
√
π
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ĴinAdt. (7.13)

Here, dQ̂wall and dQ̂cond denote the heat flow from the thermal bath at Tbath

[112] and heat flux due to the thermal conduction Ĵin, respectively. dÊpis de-
notes the kinetic energy transfer from the piston to the gas. In summary, our
SMF model consists of two coupled equations: the equation of motion for the
piston (7.5) and the energy equation for the enclosed gas (7.10).

It is known that VDF for a hard core gas under the heat flux Ĵin [192, 193]
is given by

φflux(v) =
(
1 + vxg(v)Ĵin

)
φ0(v), (7.14)

where we have introduced φ0(v) ≡
∏

µ=x,y,z φ0(vµ, T̂in) and

φ0(v, T̂in) ≡
√

m

2πT̂in

exp
[
−mv

2

2T̂in

]
. (7.15)
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In Eq. (7.14), g(v) is written as

g(v) ≡ − 4
5n̂inT̂in

(
mv2

2T̂in

− 5
2

)
. (7.16)

The energy flows dQ̂wall/dt and dQ̂cond/dt can be calculated as follows. The
heat flows outgoing q̂out

wall and incoming q̂inwall through the wall are, respectively,
given by

q̂out
wall =

{∫ ∞

−∞
dvydvz

∫ 0

−∞
dvx

mv2

2
(−vx)n̂inAφflux(v)

}
(7.17)

q̂inwall =
{∫ ∞

−∞
dvydvz

∫ 0

−∞
dvx(−vx)n̂inAφflux(v)

}
×
{∫ ∞

−∞
dvydvz

∫ ∞

0

dvx
mv2

2
φwall(v, Tbath)

}
.

(7.18)

Substituting Eqs. (7.17) and (7.18) into dQ̂wall + dQ̂cond = (q̂inwall − q̂out
wall)dt, we

obtain Eqs. (7.11) and (7.13).
The heat flux Jin is estimated from the solution of the heat diffusion equation

for the temperature profile T = T (x, t):

∂T
∂t
− κ

n

∂2T
∂x2

= 0, (7.19)

under the situation that the thermal conductivity κ and density n̂in = n are
constants in space and time, where the piston position is fixed at X̂ = L.
Imposing the boundary conditions T (x, t = 0) ≡ Tini, T (x = 0, t) = Tbath and
∂xT (x = L, t) = 0 on Eq. (7.19), the solution of Eq. (7.19) is given by

T (x, t) = Tbath − (Tbath − Tini)
∞∑

l=1

4
πl
e−( lπ

2L )2 κt
n sin

(
lπx

2L

)
. (7.20)

Assuming that Tini, L, κ and n change in time adiabatically, i.e. Tini → T̂in(t), L→
X̂(t), κ → κ̂(Φ̂(t), T̂in(t)) [192, 193] and n → n̂in(t), we obtain the approximate
heat flux Jin =

∫ L

0
−κ∂xT (x, t)dx/L as

Ĵin(t) =
4κ̂

πX̂(t)
(Tbath − T̂in(t))

∞∑
l=1

sin(lπ/2)
l

exp

−( lπ

2X̂(t)

)2
κ̂t

n̂in

 ,
(7.21)

where we have adopted expressions in Refs. [192,193] for density and tempera-
ture dependence of the thermal conductivity κ̂(Φ, T ) = (75

√
T/π/64md2

ing0(Φ))[{1+
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(12Φg0(Φ)/5)}2 + (4608Φ2g0(Φ)/225π)]. See Appendix E for transport coeffi-
cients of inelastic hard core gases and the review for the kinetic theory.

Because the heat conduction relaxes very fast for the dilute gas, we can
simplify Eq. (7.10) as

dÛin = dQ̂wall + dÊpis, (7.22)

although heat conduction exists. Indeed, we compare the dynamics of tempera-
ture in Fig. 7.3 for SMF and the dilute approximation of SMF using Eq. (7.22),
the difference between two methods is negligible. Here we have adopted the
initial volume fraction as Φ = 1.05× 10−4. We will also show that dQcond does
not affect the efficiency at MP for the dilute gas later. Thus, we use Eq. (7.22)
for the dilute gas instead of Eq. (7.10).

Figure 7.3: Comparison between SMF and the dilute approximation of SMF for
din/
√
A = 0.01. The initial volume fraction is calculated to be Φ = 1.05×10−4.

The solid line and the cross points represent the dynamics of temperature for
SMF and the dilute version of SMF, respectively. The inset represents the
detailed time evolution for 0 < t/t0 < 0.08.

In this paragraph, let us explain the numerical details of SMF. The numerical
integration is performed through Adams-Bashforth method, with dt/t0 ≡ 0.01ε
and ε ≡

√
m/M . Calculating ξ̂v

ν , v and dv are respectively replaced by vi

and ∆v, where vi = i∆v − vmax(i = 1, 2, · · · , 600), vmax ≡ 6.0
√
kBTν/M(ν =

in, out) and ∆v ≡ vmax/300. Because Eq. (7.10) turns out to be unstable if
the heat conduction in Eq. (7.13) is larger than that of Eq. (7.11), we impose
the condition dQcond = 0 if dQcond > dQwall through the simulation for the
numerical stability of our model. The simulation data are averaged in steady
cycles, where the averaged quantity is represented by 〈· · · 〉SC.
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Figure 7.4: The time evolutions of steady cycles for TH/TL = 5.0. They are
categorized into two types: damped oscillating type for ε = 0.01 (left) and over-
damped type for ε = 0.1 (right). The time evolutions for the piston position
((a) and (b)), the temperature ((c) and (d)), and the piston velocity ((e) and
(f)) are plotted. Time evolutions for the corresponding physical quantities for
MD simulation (solid line) agree with those for the SMF model (dashed line).

7.4 Time evolution

To verify the validity of our effective model, we compare the time evolution
of the MD simulation and SMF. We examine the dilute and moderately dense
gases in Sec. 7.4.1 and 7.4.2, respectively.

7.4.1 Dilute case

We consider a dilute gas of the diameter din/
√
A = 0.01 which corresponds to

Φ = 1.05 × 10−4 at t = 0. Time evolutions of the volume (the position of the
piston) for TH/TL = 5.0 are drawn in Fig. 7.4 (a) for ε = 0.01, tc/t0 = 1.60 and
(b) for ε = 0.1, tc/t0 = 8.0. The simulation data are averaged from 11th cycle
to 20th cycle, where the solid and dashed lines, respectively, represent the data
for MD simulation and those for simulation of our SMF model. Similarly, Figs.
7.4 (c) and (d) are the time evolutions for the temperature of the gas, and Figs.
7.4 (e) and (f) are the time evolutions for the piston velocity. Dot-dashed lines
represent the operation protocol of Tbath. It is remarkable that our SMF model
correctly predicts the time evolution of MD.

Let us explain the behavior of the system shown in Fig. 7.4. When the
heating process starts, the enclosed gas starts expanding, to find a new me-
chanical equilibrium density determined by the condition P̂in = Pout, because
the pressure for the enclosed gas becomes larger than that for the outside after
the heating. Similarly, the gas is compressed when the cooling process starts.
It should be stressed that the heating (cooling) and expansion (compression)
processes take place simultaneously.

The time evolutions of the physical quantities can be categorized into two
types: (a) damped-oscillating type and (b) over-damped type depending on the
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mass ratio ε ≡
√
m/M . Taking the average of Eq. (7.22) and assuming that

the piston is heavy ε � 1, the time evolution of the averaged temperature is
written as

Tin(t) = Tbath (1− a0V (t)) +O(ε2), (7.23)

a0 ≡
√

πm

2Tbath
. (7.24)

Assuming that the displacement of the piston is small x/Xini ≡ (X−Xini)/Xini �
1, the average of Eq. (7.5) is written as

dV

dt
= −PoutA

M

x

Xini
− γ̄V (7.25)

where we introduced the viscous friction coefficients γ̄ ≡ (γgas + a0PoutA)/M
and γgas ≡ 4(1 + e)PoutA

√
m/2πTout. The right-hand side of Eq. (7.25) is

equivalent to the force acting on a harmonic oscillator in a viscous medium. If
the viscous drag is sufficiently small, i.e. ε → 0, the motion of the piston is
the damped-oscillating type (Fig. 7.4(a)), while the motion turns out to be the
over-damped type, if ε is not small (Fig. 7.4(b)).

7.4.2 Moderately dense case

Let us examine the validity of SMF for a moderately dense gas. We adopt
din/
√
A = 0.1 which corresponds to Φ = 0.105 at t = 0. In Fig. 7.5, simulation

results for MD, SMF, and the dilute approximation of SMF are plotted. Al-
though the time evolution of MD for small t/t0 is well predicted by SMF (See
the inset of Fig. 7.5), the agreement is relatively poor for 0.1 < t/t0 < 0.5.
The agreement for 1.6 < t/t0 < 2.0 is also not good, though the difference is
not large. Note that the discrepancy for 1.6 < t/t0 < 2.0 is not relevant for
the efficiency at MP, because we need only QH. The improvement of SMF for
0.1 < t/t0 < 0.5 is left as a future work.

7.5 Existence of Maximum Power and its Effi-
ciency

In this section, we discuss the efficiency of the engine at MP. We show that
the efficiency at MP for the dilute gas corresponds to the CNCA efficiency if
the piston is sufficiently massive and elastic in Sec. 7.5.1, while that for the
moderately dense gas is smaller than the CNCA efficiency as will be presented
in Sec. 7.5.2
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Figure 7.5: The time evolution of temperature for MD, the SMF, and the dilute
approximation of SMF are compared. For heating regime t/t0 < 1.6, the dilute
SMF overestimates the heat gain, while the SMF works better than the dilute
version, in particular, for small t/t0. The inset represents the detailed time
evolution for 0 < t/t0 < 0.08, where SMF captures the MD simulation results.

7.5.1 Dilute case

Let us illustrate that the MP exists for our engine. We define the work Ŵtot

and the heat spent per a cycle Q̂H as

Ŵtot ≡
∮

1 + e

2
(P̂in − Pout)AdX̂, (7.26)

Q̂H ≡
∫

TH

dQ̂wall, (7.27)

where
∮

and
∫

Tµ
represent the integral over a single cycle and the integral for

the bath at Tbath = Tµ(µ = H or L), respectively, with the definition of dQ̂wall

in Eq. (7.11). The validity for the definition of work Eq. (7.26) is discussed in
Appendix ??. The efficiency for a single operation protocol [194] is defined as

η̂ ≡ Ŵtot

Q̂H

. (7.28)

We also introduce the conventional efficiency, which is defined as

η̄ ≡ 〈Ŵtot〉SC

〈Q̂H〉SC

. (7.29)
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Figure 7.6: The average power is plotted against tc. Apparently, there exists tc
for the maximum power operation, which corresponds to the necessary time for
gas to expand toward the mechanical equilibrium. The dotted curve drawn as
the guide line proportional to 1/tc.

In this section, we average the data from 11th cycle to 110th cycle.
The contact time dependence of the power p̂w ≡ Ŵtot/2tc, for the under-

damped type ε = 0.01 (squares) and the over-damped type ε = 0.1 (circle) are
shown in Fig. 7.6, where TH/TL = 5.0 and e = 1.0 are fixed and p0 ≡ Tout/t0.
Apparently, the MP is achieved at time tMP

c , which corresponds to the necessary
time for the gas to expand toward the mechanical equilibrium. We note that
the long time heating or cooling ruins the power, because the extracted work is,
at most, N(TH − TL)ln(TH/TL). Thus, the power decreases as a function of tc:
〈p̂w〉SC ∝ 1/tc for tc � tMP

c , which is drawn as a dashed line in Fig. 7.6.
We, here, explain that the obtained work is balanced with the work done by

the viscous friction for gases. Multiplying V onto Eq. (7.25) and integrating
over the cycle, we obtain Wtot =

∮
Mγ̄V dX > 0, because the integral of the

left hand side of Eq. (7.25) is zero. Thus, the obtained work is balanced with
the work done by the viscous friction for gases.

We present the results for the efficiency at MP (Fig. 7.7) for (a) ε = 0.01 and
(b) ε = 0.1. The main figures represent the results for the elastic piston (e =
1.0), and the insets are those for the corresponding inelastic piston (e = 0.9).
The open squares 〈η̂〉SC and triangles η̄ are the simulation data for the SMF for
the dilute gas characterized by Eq. (7.22), while filled ones are the data for the
corresponding MD simulation. Although η̄ and 〈η̂〉SC are different quantities,
they agree with each other. As a comparison with previous studies, we plot
the CNCA efficiency ηCA (dotted lines). Our SMF model correctly predicts the
efficiency at MP for MD simulations, at least for ε = 0.01, while our model is
lower than the CNCA efficiency for ε = 0.1. We note that the efficiency for our
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Figure 7.7: Efficiencies at maximum power operations for dilute gases for (a)
ε = 0.01 and (b) ε = 0.1. The main figures represent the results for the elastic
piston case, and the insets are those for the corresponding inelastic piston. In
the main figure of (a), we plot the result of SMF (open piles). The open squares
〈η̂〉SC and open triangles η̄ are simulation data for the dilute approximation of
SMF, while filled ones are the data for the corresponding MD simulation. For
the elastic piston of ε = 0.01, the observed efficiencies are close to ηCA (dashed
line) and Eq. (7.35)(solid line).

model with e = 1.0 and ε = 0.01 are close to the CNCA efficiency.
Here, we derive the semi-analytical expression on η̄ on the basis of SMF in

the limit ε → 0. In this limit, T̂in rapidly relaxes to bath temperature, right
after Tbath is switched. The average of the work Eq. (7.26) can be approximated
by

〈Ŵtot〉SC ' N(TH − TL)lnX̃(tc), (7.30)

where we have introduced the volume change of the gas through the cycle
X̃(tc) ≡ 〈X̂(tc)〉SC/〈X̂(0)〉SC and choose e = 1. Integrating the equation of
the energy conservation (7.22), we obtain

∆Û = Q̂H + Ê
(H)
pis (7.31)

where we have introduced ∆Û = 3N(TH − TL)/2 and Ê
(H)
pis ≡

∫
TH
dÊpis. Aver-

aging Eq. (7.31) and expanding in terms of ε, we obtain

〈Q̂H〉SC =
3
2
N(TH − TL) +NTHlnX̃(tc) +O(ε), (7.32)

where we have ignored the heat leak due to the fluctuation of the piston O(ε).
Therefore, the efficiency η̄ is given by

η̄ =
TH − TL

TH + 3
2

TH−TL

lnX̃(tc)

=
ηC

1 + 3
2

ηC

lnX̃(tc)

. (7.33)
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Assuming that X̃(tMP
c ) depends on the power of TH/TL:

X̃(tMP
c ) =

(
TH

TL

)α

= (1− ηC)−α
, (7.34)

we obtain the analytical expression on η̄ for MP:

η̄MP = ηC

(
1− 3

2α
ηC

ln(1− ηC)

)−1

=
1

1 + 3
2α

ηC +
3
4α

(
1

1 + 3
2α

)2

η2
C +

α+ 6
8α2

(
1

1 + 3
2α

)3

η3
C +O(η4

C),

(7.35)

which is shown in Fig. 7.7 by solid lines. The exponent α is estimated from
the simulation of SMF, where α = 1.5 for ε = 0.01 and α = 0.79 for ε = 0.1
(Fig. 7.8). As is shown in Fig. 7.7, Eq. (7.35) agrees with the results of MD for
ε = 0.01, while the agreement is not good for ε = 0.1. The integration of O(ε)
term would be necessary for the better agreement of ε = 0.1. We expect that
the exponent α is reduced to α = 3/2 in the limit ε→ 0 and e→ 1, as follows.
Although there exist the tiny heat leak during the expansion process, we may
approximately ignore the leak because the heating process is almost isochoric,
as will be discussed in Sec. 7.7. Recalling Poisson’s relation for an adiabatic
process of ideal gases between state 1 and 2: (T (2)

in /T
(1)
in )3/2(X(2)/X(1)) = 1,

where X(a) and T
(a)
in (a = 1, 2) respectively represent the position of the pis-

ton and temperature for the state a, the exponent α = 3/2 agrees with the
simulation result. In Sec. 7.6, we will prove that α = 3/2 corresponds to the
tight coupling condition for the Onsager matrix in linearly irreversible thermo-
dynamics. Substituting the obtained α = 3/2 for ε = 0.01 into Eq. (7.35), we
obtain

η̄MP =
ηC

2
+
η2

C

8
+

5η3
C

96
+O(η4

C) (7.36)

We note that Eq. (7.36) is identical to the expansion of ηCA up to O(η2
C):

ηCA =
ηC

2
+
η2

C

8
+
η3

C

16
+O(η4

C). (7.37)

However, the existence of ε lowers the efficiency from ηCA even at the leading
order O(ηC), because α = 0.79 < 3/2 for ε = 0.1. We thus conclude that the
efficiency at MP for passive engines confining dilute gases is the CNCA efficiency
if the piston is sufficiently massive and elastic.

7.5.2 Moderately dense case

We have analyzed the efficiency for dilute gases in the previous subsection. Here,
we discuss the efficiency at MP for a moderately dense hard core gas. The
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Figure 7.8: The volume change of the enclosed gas at MP X̃(tMP
c ) is plotted

against TH/TL. The main figure is for ε = 0.01, and the inset is ε = 0.1.

efficiency at MP is plotted in the main figure of Fig. 7.9, where SMF model
almost correctly predicts the results of our MD simulation. The data for SMF at
TH/TL = 1.2, 1.3, 1.4 are averaged over 1.0× 104 cycles after 10 cycles for initial
relaxation to improve their numerical accuracy. The other data are averaged
from 11th cycle to 110th cycle. We find that the efficiency for moderately dense
hard core gases is smaller than that for dilute ones to compensate the heat flux
Jin as will be shown in the next section.

7.6 Linearly irreversible thermodynamics

In the previous section, we have suggested that the efficiency at MP output
for the dilute gas can be described by the CNCA efficiency in the limit ε →
0 and e → 1, while that for the moderately dense gas is smaller than the
CNCA efficiency. In this section, we show that results in linear non-equilibrium
situation ηC → 0 can be understood by the relations between the currents Ji

and the thermodynamic forces Xi on the basis of the Curie-Prigogine symmetry
principle [149]:

J1 = L11X1 + L12X2, (7.38)
J2 = L21X1 + L22X2, (7.39)

where the Onsager matrix satisfies L11, L22 ≥ 0, L12 = L21 and detLij =
L11L22 − L12L21 ≥ 0. In the following, we assume that the piston is elastic
e = 1.0 and massive limit ε→ 0, and we abbreviate the average of an arbitrary
stochastic quantity Â as A = 〈Â〉SC. We examine the dilute gas in Sec. 7.6.1
and clarify the finite density effect in Sec. 7.6.2.
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Figure 7.9: The main figure represents the efficiency at MP for moderately dense
hard core gases. SMF almost correctly predicts the efficiency for MD simulation.
We note that the efficiency is much smaller than the CNCA one, which is caused
by the inevitable heat flux dQcond. The inset represents the expansion ratio for
the dense gases. The exponent α is estimated to be α = 1.141± 0.009.

7.6.1 Dilute case

Let us derive the Onsager matrix Lij in our setup for the dilute gas following
Refs. [113, 115]. We consider the linear non-equilibrium situation as TH,L =
T ± ∆T/2, where T and ∆T are the mid-temperature T ≡ (TH + TL)/2 and
the temperature difference ∆T = TH − TL, respectively, satisfying ∆T/T � 1.
Here, the total entropy production per a unit cycle ∆σ = −QH/TH −QL/TL is
rewritten as

∆σ = −Wtot

T
+

∆T
T 2

QH, (7.40)

where we have used Wtot = QH + QL and ∆T/T � 1. On the basis of the
relation

∆σ
2tc

= J1X1 + J2X2, (7.41)

Ji and Xi are respectively given by

J1 =
T

2tc
, J2 =

QH

2tc
, (7.42)

X1 = −Wtot

T 2
, X2 =

∆T
T 2

=
ηC

T
. (7.43)

Let us derive L11 and L21 by taking ηC = ∆T/T → 0. Wtot is written as

Wtot ' NηCT lnX̃(tc)− 2a0NT

∫ XH

XL

V
dX

X
. (7.44)
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The first term on the right-hand side of Eq. (7.44) vanishes in the limit ηC → 0.
Then, from Eqs. (7.38), (7.42), and (7.43) we obtain

L11 =
T 2

4tcN
1
Ẽ
≥ 0, (7.45)

Ẽ ≡
∫ XH

XL

a0V
dX

X
. (7.46)

Here, we have introduced Ẽ as the inevitable dissipation due to the finite velocity
of the piston. Now the heat QH is given by

QH =
3
2
N

∆T
T
T +N

(
T +

∆T
2

)
lnX̃(tc)−N

(
T +

∆T
2

)
a0

∫ XH

XL

V
dX

X
,

(7.47)

which can be rewritten as

QH

2tc
=

T 2

4tc
lnX̃(tc)− Ẽ

Ẽ

(
−Wtot

T 2

)
' T 2

4tc
lnX̃(tc)
Ẽ

X1, (7.48)

L21 =
T 2

4tcẼ
lnX̃(tc), (7.49)

in the leading order of Wtot/T and the limit ηC → 0. Next, let us determine
L12 and L22. L12 can be determined from the condition Wtot = 0, i.e., the
work-consuming state:

Wtot = NX2T
2lnX̃(tc)− 2NTẼ = 0. (7.50)

Then, we obtain the reciprocal relation

L12 =
T 2

4tcẼ
lnX̃(tc) = L21. (7.51)

Taking terms depending only on ∆T in Eq. (7.47), we obtain

QH

2tc
' 1

2tc

(
3
2
NT 2 +

NT 2

2
lnX̃(tc)

)
∆T
T 2

, (7.52)

L22 =
1

2tc

(
3
2
NT 2 +

NT 2

2
lnX̃(tc)

)
≥ 0, (7.53)

where we have ignored the higher order term including a0. Equations (7.45),
(7.49), (7.51) and (7.53) are the explicit expressions of the Onsager matrix.

Here, we show that α = 3/2 corresponds to the tight coupling limit of the
Onsager matrix, where fluxes J1 is proportional to J2. Because the determinant
is readily calculated as

detLij =
T 4

8t2cẼ

(
3
2

+
αηC

2
− α

)
' T 4

8t2cẼ

(
3
2
− α

)
≥ 0. (7.54)
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The tight coupling limit detLij = 0 corresponds to α = 3/2, which is equal to
the value obtained in Sec. 7.5. The CNCA efficiency is derived on the basis of
Eqs. (7.38) and (7.39) in the tight coupling limit, following the similar procedure
in Ref. [111]. It should be noted that the control parameter for our engine is
not X1 but J1, in contrast to Ref. [111].

7.6.2 Moderately dense case

We stress that the efficiency at MP of the engine for the moderately dense gas is
much smaller than the CNCA efficiency even in linear non-equilibrium regime
ηC � 1, which is the result of the inevitable loose coupling of the Onsager
matrix L∗

ij as follows. Solving the average of Eq. (7.10) in terms of Tin, we
obtain

Tin(t) = Tbath(1− a∗0(t)V (t)) +O(ε2) (7.55)

a∗0(t) ≡ a0

1 + 4Φ(t)g0(Φ(t)) + j̃in(t)
, (7.56)

where we have introduced the scaled flux j̃in = {Tbath/(Tbath − Tin)}dQcond/dt.
See also Eq. (7.24) for the comparison with the dilute case. Because the addi-
tional heat flux dQcond exists, Eqs. (7.40) and (7.47) are, respectively, replaced
by

∆σ = −Wtot

T
+

∆T
T 2

QH +
1
T
Qcond, (7.57)

QH =
3
2
N

∆T
T
T +N

(
T +

∆T
2

)
lnX̃(tc) +QH

cond

−N
(
T +

∆T
2

)∫ XH

XL

εa∗0(t)V
dX

X
, (7.58)

where we have introduced

Qcond ≡
∑

µ=H,L

Qµ
cond (7.59)

Qµ
cond ≡ −

∫
Tµ

dQcond. (7.60)

Note that the sign of QH
cond and QL

cond are positive and negative respectively,
and they are O(∆T ), while Qcond > 0 is O(∆T 2) (See Eqs. (7.13), (7.21), and
(7.60)). Thus, we obtain the Onsager matrix as

L∗
11 ≡ T 2

4tcN
1
Ẽ∗
≥ 0, (7.61)

L∗
21 ≡ T 2

4tcẼ∗
lnX̃(tc) = L∗

12, (7.62)

L∗
22 ≡ 1

2tc

(
3
2
NT 2 +

NT 2

2
lnX̃(tc) + q̃

)
≥ 0, (7.63)
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where we have introduced Ẽ∗ ≡
∫XH

XL
(V/X)a∗0(t)dX and q̃ ≡ Qcond/N∆T +

QH
condT/N∆T 2 > 0. We have checked that q̃ ' 2.04 for the operation of MP

with TH/TL = 1.5 through the simulation of SMF. The tight coupling condition
for L∗

ij is, thus, reduced to

α =
3
2

+ q̃ >
3
2
. (7.64)

On the other hand, we find that α < 3/2 holds, which might be justified by
the parallel argument to that in Sec. 7.5. With the aid of Eq. (7.9), Poisson’s
relation for a moderately dense gas can be derived as:(

T
(2)
in

T
(1)
in

)3/2(
X(2)

X(1)

)1+Ψ

= 1. (7.65)

Here, Ψ represents the correction term due to the finite density effect:

Ψ ≡ −Φ(2) − Φ(1)

ln X(2)

X(1)

4− 3(Φ(2) + Φ(1)) + 2Φ(2)Φ(1)

(1− Φ(2))2(1− Φ(1))2

' 4
din

X(1)
, (7.66)

where Φ(a)(a = 1, 2) represents the volume fraction for the state a. Hence, we
expect α = 3/{2(1 + Ψ)} ' 1.07, which agrees with α = 1.141± 0.009 < 3/2 in
the simulation of SMF shown in the inset of Fig. 7.9. Although this agreement
may be accidental because the heat leak exists in the process, it is interesting
to look for the reason why Poisson’s relation works well. Thus, the system does
not satisfy the tight coupling condition for moderately dense gases because of
the existence of dQcond.

7.7 Discussion

Let us discuss the difference between our results and previous works. Here, we
explain that our engine contains isochoric and quasi-adiabatic heating/cooling
processes, i.e., our engine is similar but different from the Otto engine. The
pressure-volume graph for ε = 0.01 and TH/TL = 5.0 is plotted in the main figure
of Fig. 7.10. We also plot the time evolutions of the heat flux (solid line), the
piston position (chain line), and the pressure (dashed line) for 0 < t/t0 < 1.6 in
the inset of Fig. 7.10, where the heat flux is scaled by q̇0 ≡ 5.0×105Tout/t0. We
notice that the heating process ends very fast t/t0 ∼ 0.1, and it can be regarded
as the isochoric process. Then, the system expands with smaller heat flux which
is less than 10% of the isochoric regime for t/t0 < 0.5. For 0.5 < t/t0 < 1.6,
the system is approximately adiabatic, i.e. the heat flux is negligible. Thus, our
engine is similar but different from the Otto engine.

Let us explain the reason why the heat flux dQcond for a moderately dense
gas is relevant to the efficiency at MP in contrast to the conventional finite time
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Figure 7.10: The main figure represents the pressure-volume figure for ε =
0.01, TH/TL = 5.0. The inset represents the time evolution of the heat flux
from the thermal wall (solid line), the position of the piston (chain line) and the
pressure for the enclosed gas (dashed line) for 0 < t/t0 < 1.6. The heat process
ends fast, and can be regarded as an isochoric one.

thermodynamics. As a counter example, let us consider the finite time Carnot
cycle, which contains isothermal and adiabatic processes. When we attach the
thermal bath to the gas, the amount of heat flux for a finite time Carnot cycle
is too small and dQcond does not exist, because the temperature of the gas and
that of the bath are essentially identical as the result of the adiabatic processes
with mechanical control of the piston. On the other hand, the amount of heat
flux for our engine is large because the temperature of the gas and that of the
bath are different when we attach the bath onto the gas. Thus, the effect of the
heat flux dQcond is significant for the efficiency for the passive engine.

For a macroscopic piston in the limit ε→ 0, the one-dimensional momentum
transfer model (Eqs. (7.1) and (7.2)) is too simple for the realistic motion of
the piston, where the side-wall friction [240], the excitation of atoms on the
piston surface [241] and tilting of the piston, etc. should be relevant for the
real piston motion. In Appendix H, we discuss the effect of side-wall friction
on the efficiency for our protocol and show that the side-wall friction lowers the
efficiency.

7.8 Conclusion

In this chapter, we have investigated the efficiency at MP for a passive engine.
We have considered an operation protocol for a hard core gas partitioned by a
massive piston (Figs. 7.1 and 7.2). SMF has been proposed and its relevance
has been demonstrated from the comparison of its result with the result of the
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MD simulation for the dilute gas (Fig. 7.4) and the moderately dense gas (Fig.
7.5). We have found the existence of the MP in Fig. 7.6 and examined the
efficiency at MP for the dilute gas in Fig. 7.7. The efficiency at MP for dilute
gases is close to the CNCA efficiency for an elastic and massive piston. We have
derived the analytical expressions for the efficiency at MP on the basis of SMF
as Eqs. (7.35) and (7.36). To understand the linear non-equilibrium regime,
we have derived the Onsager matrix explicitly Eqs. (7.45), (7.49), (7.51), and
(7.53), and have found that the tight coupling condition is satisfied for the
dilute gas. In contrast to the dilute gas, we have found that the efficiency at
MP for moderately dense gases is smaller than the CNCA efficiency even for an
elastic and massive piston in linear non-equilibrium regime (Fig. 7.9). We have
clarified the importance of the heat flux when Tbath is switched, which induces
the inevitable loose coupling for the Onsager matrix.
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Chapter 8

Discussion and Summary

Let us summarize the thesis with some remarks. In Chapter 5, we have examined
the roles of sliding friction in the fluctuating motion of the adiabatic piston.
We have found that an arbitrary nonlinear friction can reverse the direction of
the motion of the piston, while the linear one cannot. We have also derived
the fluctuation relation under dry friction. In Fig. 5.4, we have discussed
the steady state velocity of the piston as a function of the friction coefficient.
Notice that the velocity of the piston under nonlinear friction exhibits a peak
around µ′

0 ∼ 1.0 and the peak height depends on the functional form of the
nonlinear friction. It is interesting and important to clarify the optimal friction
to maximize the piston velocity on the basis of Ref. [93].

In Chapter 6, we have clarified the role of a granular rotor as a probe of the
VDF of a non-equilibrium bath. We have shown that there exists a one-to-one
relation between the VDF of a non-equilibrium bath and the angular VDF of the
rotor, using the molecular dynamics simulation of a vibrating granular bed. Let
us discuss the possible extension of results in Chapter 6. We have assumed the
restitution coefficient of grains is constant [175,176]. The restitution coefficient
for a sphere depends on the impact velocity vimp as e(vimp) = 1 − B1v

1/5
imp +

· · · (B1 > 0) [61,187]. As discussed in Ref. [188], the velocity dependence of the
restitution coefficient can be also analyzed in our theory within the framework
of the Boltzmann-Lorentz equation. The effects for the tangential interaction
and the mutual rotation between grains are also necessary to be analyzed. The
extension of the Boltzmann equation toward denser gas is known as the Enskog
equation [73, 74] (See also Appendix E). It is possible and interesting to apply
our framework to the rotor in dense granular media [189] or denser granular
liquids near the jamming transition beyond Enskog equation [86] by modifying
the transition probability Wεrot in Eq. (6.6) [190]. As a future problem, it is
also necessary to estimate the amount of the errors in particular for the inverse
estimation formulas Eqs. (6.11) and (6.12).

In Chapter 7, we have theoretically analyzed the efficiency at MP for a
passive engine, which is the simplest model of internal combustion engines. We
have illustrated that the efficiency at MP for an elastic massive piston confining
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a dilute gas is given by the CNCA efficiency, while that for a moderately dense
gas is smaller than the CNCA efficiency even for an elastic and massive piston
in the linear non-equilibrium regime. We have shown that the heat flux when
Tbath is switched induces the inevitable loose coupling for the Onsager matrix.
We should note that such a loose coupling would appear not only for a passive
engine but also other engines, e.g. the finite time Carnot cycle if the temperature
of a working fluid is different from Tbath. Thus, we conclude that the heat flux
when Tbath is switched should be suppressed for higher efficiency at MP.

The model considered in Chapter 7 might be unrealistic if the gas is re-
garded as a molecular gas because the mass of a real piston must be much
larger than the mass of each molecule and adhesion between molecules and
walls cannot be ignored in such a small engine. Our model, however, would
be experimentally realized through two kinds of setups: colloidal suspensions
with a semi-permeable membrane and a highly excited granular gas with a
movable piston. Although the hydrodynamic interaction between colloids is
important, the osmotic pressure between two dilute solutions separated by a
semi-permeable membrane is described by van’t Hoff’s formula which has an
identical form to the equation of states for ideal gases. Inhomogeneity and non-
Gaussianity of granular gases can be suppressed, at least, for a specific setup
of a highly agitated granular gas [29–31]. Thus, our model can be regarded as
a simplified and idealized one for such systems. It would be interesting to con-
sider the stochastic version of the multi-component chemical engine discussed
in Chapter 2 and the non-equilibrium engine consisting of an inelastic hard core
gas whose transport coefficients are given in Ref. [193] and summarized in Ap-
pendix E. To improve SMF model, we need to solve hydrodynamic equations
under the moving boundary in contrast to the treatment in this paper. We also
need to investigate the nonlinear Onsager matrix to understand the efficiency
in the nonlinear non-equilibrium regime [114, 115]. Finally, because thermody-
namic studies of engines without any force controls are little known so far, their
experimental studies will be expected near future.

83



Appendix A

Derivation of fluctuation
relation under dry friction

In this appendix, we derive the fluctuation relation under dry friction Eq. (5.37),
writing Ŵ ≡ Ŵ ′

L and dŴ ≡ dŴL−F0V̂ dt. Let us derive a Master equation for
the joint probability f(V,W, t) ≡ 〈f̂(V̂ (t), Ŵ ′

L(t))〉 with f̂(V̂ (t), Ŵ ′
L(t)) ≡ δ(V −

V̂ (t))δ(W − Ŵ ′
L(t)) following Ref. [8]. For an arbitrary function g = g(V̂ , Ŵ ),

the differentiation dg(V̂ , Ŵ ) ≡ g(V̂ + dV̂ , Ŵ + dŴ )− g(V̂ , Ŵ ) is given by

dg(V̂ , Ŵ ) =
1
M

(∑
v

dL̂v
L · Pv

)
·
{(

∂

∂V
+MV

∂

∂W

)
g

}

+
1

2M2

(∑
v

dL̂v
L · P 2

v

)
·

{(
∂

∂V
+MV

∂

∂W

)2

g

}

+
1
M

(∑
v

dL̂v
R · Pv

)
· ∂g
∂V

+
1

2M2

(∑
v

dL̂v
R · P 2

v

)
· ∂

2g

∂V 2

−F0V̂ ·
∂g

∂W
dt− ε F̄fri

M
σ(V ) · ∂g

∂V
dt

+O(ε2dt). (A.1)

It should be noted that 〈
∑

v dL̂
v
α · Pn+1

v 〉 = O(εndt). By taking the ensemble
average of Eq. (A.1) and expanding it up to O(ε), the Master equation for
f(V,W, t) is derived [8]. Introducing Laplace transformation of f(V,W, t) as

f̃β ≡
∫
dWe−βW f(V,W, t), (A.2)

we obtain the time evolution for f̃β :

∂

∂t
f̃β = ε

γ0

M
(Lβ + Lfri) f̃β +O(ε2), (A.3)
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where Lβ and Lfri denote the linear operators on f̃β as

Lβ =
v2

Te

2
∂2

∂V 2
+

(
1 + β̌

γL

γ0

√
TL

TR

)
∂

∂V
V − β̌

2
γL

γ0

√
TL

TR

+
γL

γ0
β̌

(
1 +

√
TL

TR

β̌

4

)
V 2

v2
Te

, (A.4)

Lfri ≡ µ0vTe

∂

∂V
σ(V ). (A.5)

with β̌ ≡ 2kBTeβ. The eigenvalues κn and eigenfunctions for the operator (A.4)
and its adjoint operator L†

β are discussed in Ref. [162] :

Lβψn(V ) = κnψn(V ) (A.6)

L†
βφn(V ) = κnφn(V ) (A.7)

ψn(V ) =

√
ζ

2πvTe2nn!
exp

[
− ζV

2

2v2
Te

]
Hn

(√
ηV

vTe

)
, (A.8)

φn(V ) =

√
2η
ζvTe

exp
[
−
(
η − ζ

2

)
V 2

v2
Te

]
Hn

(√
ηV

vTe

)
,

(A.9)

κn(β) =
1
2
{1− (1 + 2n)η(β)} , (A.10)

η(β) ≡

√√√√1 +

√
T̃ (2kBTe)2

(1 +
√
T̃ )2

β(∆βe − β), (A.11)

where Hermite polynomials are defined as Hn(x) ≡ (−1)nex2
(d/dx)ne−x2

and∫∞
−∞ dxe−x2

Hn(x)Hl(x) =
√
π2nn!δnl(n, l = 0, 1, · · · ). κn(β) has the Gallavotti-

Cohen-type symmetry as κn (∆βe − β) = κn(β) [159, 161], which leads to the
conventional fluctuation relation without dry friction:

lim
t→∞

1
t

ln
P(pw, t)
P(−pw, t)

= ∆βepw +O(ε2). (A.12)

Let us solve eigenvalue problem for Lβ + Lfri perturbatively up to O(ε, µ0),
assuming that µ0 is small:

(Lβ + Lfri) ψ̄n(V ) = κ̄n(β)ψ̄n(V ), (A.13)

We assume that Re(κ̄n) ≤ Re(κ̄m) for n > m, where Re(a) represents the real
part of any complex number a. Multiplying φn(V ) on both sides of Eq. (A.13),
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integrating them over V and substituting κ̄n(β) = κn(β) + µ0κ
(1)
n (β) + O(µ2

0),
ψ̄n(V ) = ψn(V ) +O(µ0) into Eq. (A.13) for n = 0, we obtain:

µ0κ
(1)
0 (β) = − µ0√

πη(β)

(
1 + β̌

√
T̃

1 +
√
T̃

)
. (A.14)

The largest eigenvalue of the operator εγ0(Lβ + Lfri)/M is known to be equal
to the scaled cumulant generating function [236]:

lim
t→∞

1
t

ln〈e−βŴ ′
L(t)〉 = ε

γ0

M
κ̄0(β) (A.15)

Thus, according to Ref. [157], the large deviation property for Ŵ ′
L under the

dry friction is characterized by the Legendre transformation of the maximum
eingenvalue of Lβ + Lfri:

lim
t→∞

1
t

lnP(pw, t) = pwβ
∗ + ε

γ0

M
κ̄0(β∗), (A.16)

where β∗ = β∗(pw) gives the minimum for pwβ + εγ0κ̄0(β)/M . Taking the
asymmetric part in terms of pw, we obtain Eq. (5.37).
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Appendix B

Benchmark Test for
Simulation

Figure B.1: The results of MD simulation for the rotor under viscous friction
(squares) and our analytical solution are compared. The solid line represents
the Fourier transform of Eq. (B.1). Our exact solution perfectly agrees with
the MD simulation data.

In this appendix, we show that Pss observed in our MD simulation for the
granular rotor can be analytically predicted when the gas is elastic (eg = e = 1)
without gravity g = 0 and vibration, fixing zmax = 0 as a benchmark test. We
analyze a container heated by the thermal wall at the bottom. The top and the
side walls of the container are chosen to be smooth elastic walls. The thermal
wall is chosen to be the diffusive wall, i.e, the post collisional velocity of a grain
v = (vx, vy, vz) against the thermal wall is chosen to be random, following the
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distribution φwall(v, Tbath) = (m/Twall)
2
vz exp

[
−mv2/2Twall

]
/2π [183]. We

choose the typical velocity in this setup v′0 =
√
Twall/m instead of v0 as in

Sec. 6.3. We have numerically checked that the VDF for the elastic gas can be
regarded as the Gaussian φ̃(x) = φG(x) with x = v/v′0. Pss can be obtained
analytically from our theory. The obtained solution is compared with the MD
simulation data in Fig. B.1 for the viscous rotor.

With the aid of Eqs. (6.8) and (6.9), we obtain the analytic solution for
Pss(Ω) as

P̃ss

(
k

w̃

)
= exp

[
− 1

3γ̃
√

2π
k2

2 2F2

(
1, 1
2, 5

2

∣∣∣∣−k2

2

)]
, (B.1)

where we have used the following formulas γ̃B = 1/
√

2π, πk
∫∞
0
dxxφG(x)H0(kx) =

kDF

(
k/
√

2
)
/
√
π, and∫ k√

2

0

ds′

s′

(
DF (s′)
s′

− 1
)

= −k
2

6 2F2

(
1, 1
2, 5

2

∣∣∣∣−k2

2

)
. (B.2)

Here, DF (x) is the Dawson function [185]:

DF (x) ≡ e−x2
∫ x

0

et2dt (B.3)

and qFp is the generalized hypergeometric function [185,238]:

qFp

(
a1, a2, · · · aq

b1, b2, · · · bp

∣∣∣∣ z) ≡ ∞∑
l=0

(a1)l(a2)l · · · (aq)l

(b1)l(b2)l · · · (bp)l

zl

l!
, (B.4)

where we have introduced the Pochhammer symbol as (a)l ≡ Γ(a+ l)/Γ(a) with
l ≥ 0. To plot Fig. B.1, we adopt γ/mLboxv0 = 1.0, which corresponds to
γ̃ = 0.57624. The histogram for the angular velocity is shown in Fig. B.1 and
the analytical solution (solid line) is consistent with the MD simulation result
(squares), which ensures the accuracy of our MD code for the granular rotor
and the validity of our framework.
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Appendix C

Detailed calculation for a
viscous frictional rotor

C.1 Derivation

In this appendix, we show the detailed derivation of the analytic results for
the viscous frictional rotor in Sec. 6.5. Introducing Y ≡ y/εrot, the transition
rate given by W(Y) ≡ W̄(ω = 0;Y) is independent of εrot and Ω. We note
that Wεrot(ω; y) satisfies the relation W̄(ω;Y)dY = Wεrot(ω; y)dy up to the
leading order. We obtain the reduced time evolution equation for P = P(Ω, t)
in εrot → 0 limit from Eq. (6.6) when the axial friction is sufficiently strong,
according to the generalized system size expansion method [92,93]. For general
frictional torque Nfri = Nfri(ω), we obtain

∂P
∂t

= −1
I

{
∂

∂Ω
Ñfri(Ω)P

}
+
∫ ∞

−∞
dYW(Y) {P(Ω− Y , t)− P(Ω, t)} ,

(C.1)

W(Y) = ρh

∫ 2w

0

d%

∫ ∞

−∞
dvxdvyφ(vx, vy)Θ(−vn)| − vn|δ (Y −∆ω̄′) , (C.2)

∆ω̄′ ≡ −1 + e

RI
g(%)vn, (C.3)

where we have introduced the rescaled friction Ñfri(Ω) = Nfri(εrotΩ)/εrot. It
should be noted that Ñfri(Ω) = O(1) is assumed in εrot → 0 limit.

The scaled friction is written as Ñfri = −γ̃Ω in Eq. (C.1) for the case of
viscous friction with γ̃ = γ/(2ρhwIv0). We calculate the cumulant generat-
ing function Φ(s). For an even integer l, the cumulant Kl =

∫
dYY lW(Y) is
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calculated as

Kl = ρh

∫ 2w

0

d%

∫ ∞

−∞
dvxdvyφ(vx, vy)Θ(−vn)| − vn|(∆ω̄′)l

= ρh
(1 + e)l

Rl
I

2
∫ w/2

−w/2

d%′
(
%′

RI

)l ∫ ∞

0

dvv

∫ 2π

0

dθφ(v)Θ(−v cos θ)(−v cos θ)l+1

= ρh
(1 + e)l

Rl
I

4
∫ w/2

0

d%′
(
%′

RI

)l ∫ ∞

0

dvvl+2φ(v)
Γ
(

l+2
2

)
Γ
(

l+3
2

)√π
= ρh

√
π(1 + e)l

R2l
I

Γ
(

l+2
2

)
Γ
(

l+3
2

) 4
l + 1

(w
2

)l+1
∫ ∞

0

dvvl+2φ(v). (C.4)

We have changed the coordinate variable % to %′ satisfying −w/2 < %′ < w/2,
and used the front-back symmetry for the rotor. Here, Γ(y) represents the
Gamma function Γ(y) =

∫∞
0
sy−1e−sds. Then, Φ(s) is written as

Φ(s) =
∫ ∞

0

dvφ(v)2
√
πρh

∞∑
l=1

wl+1vl+2

R2l
I 2l

(is)l(1 + e)l

(l + 1)!
Γ
(

l+2
2

)
Γ
(

l+3
2

)
= −

∫ ∞

0

dvφ(v)2
√
πρhw

R4
I

w2s2

(
2

1 + e

)2

×


∞∑

j=2

(−1)j

(2j − 1)!
Γ(j)

Γ
(
j + 1

2

) (1 + e

2
wsv

R2
I

)2j


= −
∫ ∞

0

dṽφ̃(ṽ)
2ρhwv0
s̃2w̃2

{
−(w̃s̃ṽ)πH0(w̃s̃ṽ) + 2(w̃s̃ṽ)2

}
, (C.5)

where we have introduced the Struve function

H0(y) =
∞∑

l=0

(−1)ly2l+1

{(2l + 1)!!}2
. (C.6)

Because Φ(s) and P̃ss satisfy the relation

Φ(s) = s
γ

I

d

ds
lnP̃ss, (C.7)

we obtain

s̃3
d

ds̃
lnP̃ss =

2ρhwIv0
γw̃2

∫ ∞

0

dṽφ̃(ṽ)
{
(w̃s̃ṽ)πH0(w̃s̃ṽ)− 2(w̃s̃ṽ)2

}
. (C.8)

Introducing variables k = w̃s̃ and x = ṽ, we obtain

γ̃

{
k3 d

dk
lnP̃ss

(
k

w̃

)
+Bk2

}
= πk

∫ ∞

0

dxxφ̃(x)H0(kx), (C.9)

where we have introduced B = (2/γ̃)
∫∞
0
dxx2φ̃(x). Thus, we obtain the formula

(6.10).
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C.2 Detailed procedure

C.2.1 Forward problem

Let us explain the detailed numerical technique to obtain Pss(Ω) using Eqs.
(6.8) and (6.9). It contains the following four steps (a)-(d):

(a) Measure the VDF for the granular gas φ̃(x) around the rotor.
(b) Obtain the extrapolated data for xφ̃(x) in x→∞ limit. We fit the data

in the range x− < x < x+ by a function b1 exp(−b2x). We replace the data
for x > xcut and extrapolate the data by the fitting function in x < xend. We
have checked whether the results are invariant if we use Gaussian as a fitting
function instead.

(c) Apply the Struve transform in Eq. (6.9) using Eq. (C.6).
(d) Obtain the Fourier transform P̃ss(s). Note that Pss(Ω) has a sharp peak

around Ω = 0, which is serious for the numerical Fourier transformation in terms
of convergence. To solve this problem, we use the double exponential formula,
which is a numerical technique for singular functions [237].

In Sec. 6.5.2, we adopt the fitting ranges as x− = xcut = 3.0, x+ = 5.0, and
xend = 60.0, and obtained fitting parameters are b1 = 5910.96 and b2 = 5.64439.

C.2.2 Inverse estimation problem

Let us explain the detailed numerical technique to obtain φ(v) on the basis of
Eqs. (6.11) and (6.12). It contains the following seven steps (a)-(g), to obtain
φ̃ from the data of Pss(Ω).

(a) Obtain the data of Pss(Ω).
(b) Obtain the extrapolated data of Pss(Ω) for Ω → ∞. We fit the data in

the range Ω− < Ω < Ω+ by the function b′1 exp(−b′2Ω). Replace the data for
Ω > Ωcut and extrapolate the data Ω < Ωend by the fitting function. We have
also checked that the results are invariant if we use the Gaussian fitting function
instead.

(c) Obtain the Fourier transform P̃ss(s). We have applied the double expo-
nential formula [237], similarly to the forward problem.

(d) Estimate the parameter B. Fit the data of k3d log P̃ /dk for k → ∞ by
the function c′−Bk2. In our analysis, we fit the data in the region k−c < k < k+

c .
(e) Calculate Gvis(k) using Eq. (6.12).
(f) Fit the numerically obtained data of Gvis(k) in the procedure (e) by

c/k + d/k3 in the k → ∞ limit. In our analysis, we fit the data in the region
k−e < k < k+

e , and replace and extrapolate the data for k′cut < k < k′end by the
fitting function, where the cutoffs satisfy k−e < k′cut < k+

e .
(g) Apply the Y transform (6.11) using the data of Gvis(k) obtained in the

procedure (e).
Fitting ranges used in Sec. 6.5.3 are listed as Ω− = 4.0v0/RI ,Ω+ = 5.0v0/RI ,

Ωcut = 4.0v0/RI ,Ωend = 20.0Ωcut, k
−
c = 3.0, k+

c = 5.0, k−e = 2.5, k+
e = 3.5d =

0.603414, k′cut = 3.0, and k′end = 5.968133×104, and obtained fitting parameters
are b′1 = 0.438068RI/v0, b

′
2 = 1.26993RI/v0, c

′ = 0.40721, and c = 0.0942702.
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In Sec. 6.6, fitting ranges and parameters are listed as Ω− = 4.0v0/RI ,Ω+ =
5.0v0/RI , b

′
1 = 0.463788RI/v0, b

′
2 = 1.31134RI/v0,Ωcut = 4.0v0/RI ,Ωend =

20.0Ωcut, k
−
c = 3.0, k+

c = 5.0, c′ = 0.660408, k−e = 2.5, k+
e = 3.5, c = 0.169773,

d = 0.557026, k′cut = 3.0, and k′end = 5.968133× 104.
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Appendix D

Detailed calculation for a
dry frictional rotor

D.1 Derivation

In this appendix, we show the detailed derivation of the analytical results for
the dry frictional rotor in Sec. 6.7. The scaled dry friction in Eq. (C.1) is
written as Ñfri(Ω) = −∆̃sgn(Ω), where we have introduced ∆̃ ≡ ∆/εrot. The
independent kick solution is written as

P̃ss(s) = 1 +
I

∆̃

∫ ∞

−∞
dYW(Y)

∫ Y

0

dΩ
sgn(Ω)

[
eisΩ − 1

]
+O

(
1

∆̃′2

)
.(D.1)

Equation (D.1) is rewritten as

∆̃
I

(P̃ss − 1) =
∫ ∞

−∞
dYW(Y)

∫ Y

0

dΩ
sgn(Ω)

∞∑
l=1

(isΩ)l

l!

=
∞∑

l=1

(is)l

l!

∫ ∞

−∞
dYW(Y)

sgn(Y)Y l+1

l + 1

=
∞∑

j=1

(−1)js2j+2

(2j + 1)!

∫ ∞

−∞
dY|Y|Y2jW(Y)

1
s2
.

(D.2)

By noting the following relations for an even integer l:∫ ∞

−∞
dY|Y|Y lW(Y) =

4ρh(1 + e)l+1

R2l+2
I (l + 2)

(w
2

)l+2
∫ ∞

0

dvvl+3φ(v)
∫ π/2

−π/2

dθ cosl+2 θ

=
4ρh(1 + e)l+1

√
π

R2l+2
I (l + 2)

(w
2

)l+2 l + 4
l + 3

(
l
2 + 3

2

)
!(

l
2 + 2

)
!

∫ ∞

0

dvvl+3φ(v),

(D.3)
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∫ π/2

−π/2

dθ cosl+2 θ =
√
π

Γ
(

l+3
2

)
Γ
(

l+4
2

)
=

l + 4
l + 3

(
l
2 + 3

2

)
!(

l
2 + 2

)
!
, (D.4)

(2j + 4)
(
j + 3

2

)
!

(2j + 3)!(j + 2)!
=
√
π

(
1

2j+1(j + 1)!

)2

, (D.5)

J0(x) = 1−
∞∑

j=0

(−1)jx2(j+1)

22(j+1){(j + 1)!}2
, (D.6)

we obtain

∆̃
I

{
P̃ss

(
k

w̃

)
− 1
}(

k

w̃

)2

=
4πρhv2

0

1 + e

∫ ∞

0

dxxφ̃(x)
{

1− k2x2

4
− J0(kx)

}
.

(D.7)

We introduce coefficients here for Appendix D.2:

Cl ≡
(−1)l

22l(l!)2

∫ ∞

0

dxx2l+1φ̃(x), (D.8)

with a positive integer l = 1, 2, · · · . We thus obtain Eq. (6.13) and (6.14) from
Eq. (D.7).

D.2 Detailed procedure

We, here, explain the detailed techniques to use the analytic PDF formulas
(6.13) and (6.14). There are the following six steps (a)-(f) to obtain Pss(Ω)
numerically.

(a) Observe the granular velocity around the rotor and make a histogram to
numerically obtain the VDF φ̃(x).

(b) Introducing the sufficiently large x− and x+(x− < x+), obtain the ex-
trapolated data for xφ̃(x) in the x → ∞ limit. We fit the data in the range
x− < x < x+ by the exponential function b1 exp(−b2x). We replace the data
for x > xcut and extrapolate the data by x < xend by the fitting function. We
have also checked that the results are invariant if we use Gaussian as a fitting
function instead.

(c) Obtain Gdry(k) as the Bessel transform of φ̃ Eq. (6.14), and calculate
C1 and C2 according to Eq. (D.8).

(d) Replace the data of Gdry(k) for k < k−cut by 1/2π + C1k
2 + C2k

4, which
corresponds to the Taylor expansion of Eq. (6.14) to avoid the numerical di-
vergence of the second term in Eq. (6.13) in the k → 0 limit. In the range
k−d < k < k+

d , fit the data of Gdry(k) by d1 exp(−d2k
2). We extrapolate the

data by d1 exp(−d2k
2) in the region k > k+

cut.
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(e) Calculate Pinf ≡ lims→∞ P̃ss(s) = 1+C1w̃
2/∆̃′, which corresponds to the

delta function for Pss(Ω), and obtain the data for P̃ss(s), following Eq. (6.13).
(f) Apply the Fourier transform to the data for Pss(s)−Pinf , and obtain the

smooth part P smooth
ss (Ω). We note Pss(Ω = 0) = P smooth

ss (0) + Pinf/∆Ω. Here,
∆Ω is the data mesh for Ω. Finally we obtain Pss(Ω) = Pinfδ(Ω) + P smooth

ss (Ω).
We extrapolate the data in the procedure (b) and (d), because a large number

of data are necessary to numerically perform integral transforms twice, in the
Fourier and Bessel transform (6.13) and (6.14). The data are extrapolated also
in Sec. 6.5.3, for the same reason.

In Sec. 6.7, we adopt the fitting ranges as x− = 3.0, x+ = 5.0, xend =
20.0x−, xcut = x−, k−cut = 0.5, k−d = 1.5, k+

d = 2.0, and k+
cut = 1.75, and obtained

fitting parameters are b1 = 5910.96, b2 = 5.64439, d1 = 0.204485, and d2 =
0.527407.
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Appendix E

Kinetic theory for hard core
gases

In this appendix, we briefly review kinetic theory for both elastic and inelastic
hard core gases. We review the history of kinetic theory such as Boltzmann equa-
tion, Enskog equation, Chapman-Enskog expansion, BBGKY hierarchy, Choh-
Uhlenbeck equation and Revised Enskog equation. In Sec. E.1, we summarize
the Boltzmann equation for elastic hard core gases and the Chapman-Enskog
expansion. In Sec. E.2, we explain the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy, which clarifies the foundation of the Boltzmann equation.
In Sec. E.3, the extensions of the Boltzmann equation toward the moderately
dense gases are summarized. In Sec. E.4, the kinetic theory for granular gases
are summarized. The transport coefficients for moderately dense granular gases
is summarized in Sec. E.5 1. There are many textbooks for the kinetic the-
ory [196–203]. The history of the kinetic theory is also summarized and the
original paper for Chapman-Enskog methods or Enskog theory is reprinted in
Ref. [203]. In this appendix, the symbol “·” represents an inner product of
vectors.

E.1 Boltzmann equation

The Boltzmann equation, which is a time evolution equation for the one-body
distribution function, is introduced to understand the second law of thermody-
namics from mechanical point of view in 1872. The velocity before the collision
vl and after the collision v′

l of l th elastic particles (l = 1, 2) and the same mass
are related as

v′
1 = v1 − (k · v12)k (E.1)

v′
2 = v2 + (k · v12)k, (E.2)

1A part of this chapter overlaps with the review part of the author’s master thesis, Nu-
merical Analysis of Granular Jet Impacts [195]
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with the unit vector k ≡ (r2−r1)/|r2−r1| and relative velocities v12 ≡ v1−v2.
We introduce the pre-collision velocities v′′

l , which lead vl after the collision:

v′′
1 = v1 − (k · v12)k (E.3)

v′′
2 = v2 + (k · v12)k. (E.4)

Equations (E.1) and (E.2) are called direct collisions and Eqs. (E.3) and (E.4)
are called inverse collisions.

The Boltzmann equation for elastic gases without external force is described
as

∂f1
∂t

+ v1 · ∇1f1 =
∫
d3v2d

2kS(k · v12)(f ′′1 f
′′
2 − f1f2), (E.5)

with the scattering cross section S(k ·v12) ≡ σ2|k ·v12|Θ(k ·v12), where we have
introduced Heaviside function Θ(x) with Θ(x) = 1(x ≥ 0) and Θ(x) = 0(x < 0)
and the particle diameter σ, with abbreviation fi ≡ f(ri,vi)(i = 1, 2) and
f ′′i ≡ f(ri,v

′′
i ) at the position of i th particle ri. The right hand side on Eq.

(E.5) is called the collision integral

Iel(f, f) ≡
∫
d3v2d

2kS(k · v12)(f ′′1 f
′′
2 − f1f2). (E.6)

The first term of the collision integral denotes the increase of the probability
f1 after the collision and the second term denotes the decrease of f1. The
Boltzmann equation has been used not only for classical gases but for electron
gases or plasma [204, 205]. It is also known that the Boltzmann equation for
elastic gases is equivalent to the direct simulation of Monte Carlo (DSMC)
method [206–209].

Hydrodynamical equations can be derived from the Boltzmann equation
by integrating over

∫
d3v1 after multiplying ψ1 ≡ 1, v1α,v

2
1 , which are zero

eigenvectors of the collision integral:∫
d3v1ψ1Iel(f, f) =

∫
d3v1d

3v2ψ1

∫
d2kS(g12)(f ′′1 f

′′
2 − f1f2) (E.7)

=
1
4

∫
d3v1d

3v2{ψ1 + ψ2 − ψ′
1 − ψ′

2)} (E.8)

×
∫
d2kS(g12)(f ′′1 f

′′
2 − f1f2)

= 0, (E.9)

with g12 ≡ k ·v12. The time reversal symmetry during local collisions is used to
derive the second equation, and the last equation results from the conservation
of mass, momentum and kinetic energy. Because the derived hydrodynamical
equations contain unknown functions such as the stress tensor or the heat flux
we need the explicit expressions for f1. The systematic perturbative method to
obtain f1 is known as the Chapman-Enskog expansion.
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Chapman-Enskog expansion

The explicit calculation of the shear viscosity and the heat conductivity is per-
formed in 1917 by Chapman and Enskog, where the Boltzmann equation (E.5)
is perturbatively solved by assuming that the distribution function f1 depends
on space ant time variables through hydrodynamic variables a(r, t) = {n(r, t),
U(r, t), T (r, t)} [210], i.e. the local density n(r, t), the local velocity field U(r, t)
and the local temperature T (r, t): f1(v1, r, t)→ f1(v1|n,U , T ) defined by

n(r, t) ≡
∫
dv1f1(v1, r, t), (E.10)

U(r, t) ≡ 1
n(r, t)

∫
dv1v1f1(v1, r, t), (E.11)

T (r, t) ≡ 2
3n(r, t)

∫
dv1

m

2
(
v2

1 − U2(r, t)
)
f1(v1, r, t), (E.12)

(E.13)

Namely, ∂tf1 → (∂f1/∂a)∂ta. Because there is a large scale separation be-
tween the kinetic and the hydrodynamical regime, the small expansion param-
eter εl0 ∼ l0∂α, which denotes the non-uniformity parameter, is introduced as
a systematic expansion parameter with a mean free path l0. The distribution
function is expanded as f1 = fM + εl0f

(1) + O(ε2l0), with local Maxwellian fM

and
∫
d3v1fM = n. Here, O(ε0l0) and O(ε1l0) denote the Euler and Navier-Stokes

order solutions, respectively. In summary, the Chapman-Enskog method is the
method to solve following equations:

∂f

∂t
+ εl0v1 · ∇1f = Iel(f, f), (E.14)

f = fM + εl0f
(1) +O(ε2l0), (E.15)

f(v1, r, t) = f(v1|n(r, t),U(r, t), T (r, t)). (E.16)

E.2 BBGKY hierarchy

Let us show the relation between the Boltzmann equation Eq. (E.5) and the
microscopic equations of motion for N particles, following Ref. [202]. The dy-
namics of the system can be described as the trajectory of a phase point in
the 6N dimensional phase space (rN ,pN ) with momenta pN = p1, · · ·pN and
rN = r1, · · · , rN . Let H be the Hamiltonian of the system, which we write in
general form as

H(rN ,pN ) = KN (pN ) + VN (rN ), (E.17)

with the total kinetic energy KN ≡
∑

i p2
i /2m and potential energy VN (rN ),

where equations of motion are

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri
, (E.18)
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(i = 1, · · ·N). We introduce a phase-space probability density f [N ](rN ,pN , t).∫
drNdpNf [N ](rN ,pN , t) = 1. (E.19)

The time evolution of the probability density in phase space is governed by
the Liouville equation, which is a 6N dimensional analogue of the equation of
continuity of an incompressible fluid:

df [N ]

dt
=
∂f [N ]

∂t
+
∑

i

(
∂

∂ri
· f [N ]ṙi +

∂

∂pi
· f [N ]ṗi

)
= 0. (E.20)

We rewrite Eq. (E.20) for convenience by introducing the pair force fij between
i th and j th particles:(

∂

∂t
+
∑

i

·pi

m
· ∂
∂ri

)
f [N ] = −

∑
ij

fij ·
∂f [N ]

∂pi
, (E.21)

with fii = 0. Because we are usually interested in the behavior of a subset of s
particles, we introduce a reduced phase-space distribution function f (s):

f (s)(rs,ps, t) ≡ N !
(N − s)!

∫
dr(N−s)dp(N−s)f [N ](rN ,pN , t), (E.22)

with rs ≡ r1, · · · rs, ps ≡ p1, · · ·ps, r(N−s) ≡ rs+1, · · · rN and p(N−s) ≡
ps+1, · · ·pN . The time evolution for f (s) can be calculated by integrating Eq.
(E.21) over dr(N−s)dp(N−s).(

∂

∂t
+

s∑
i

·pi

m
· ∂
∂ri

)
f (s) = −

s∑
i,j=1

fij ·
∂f (s)

∂pi
− N !

(N − s)!

×
s∑

i=1

N∑
j=s+1

∫
dr(N−s)dp(N−s)fij ·

∂f [N ]

∂pi
.

(E.23)

Because f [N ] is symmetric with respect to interchange of particle labels and the
sum of terms for j = s + 1 to N in Eq. (E.23) is replaced by N − s times the
value of any one term. Thus, Eq. (E.23) can be simplified as ∂

∂t
+

s∑
i

pi

m
· ∂
∂ri

+
s∑

i,j=1

fij ·
∂

∂pi

 f (s) = −
s∑

i=1

∫
drs+1dps+1fi,s+1 ·

∂f (s+1)

∂pi
.

(E.24)

The exact equation (E.24) which relates f (s) with f (s+1) is known as the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The important case is s = 1:(

∂

∂t
+

p1

m
· ∂

∂r1

)
f (1) = −

∫
dr2dp2f1,2 ·

∂f (2)

∂p1
≡
(
∂f

∂t

)
coll

, (E.25)
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Although Eq. (E.25) is exact, we need all f (n)(n > 1) to obtain f (1). Thus, an
approximate closure relation is necessary to obtain f (1). If we choose(

∂f

∂t

)
coll

= Iel(f (1), f (1)), (E.26)

we obtain the Boltzmann equation (E.5). Therefore, the assumption of the
Boltzmann equation is that the two-body distribution function can be approx-
imated as the product of the one-body distribution function. The transport
coefficients for rarefied gases can be calculated via the Boltzmann equation sup-
plemented by the Chapman-Enskog expansion. Because the Boltzmann equa-
tion is only suitable for dilute gases, it has been extended to treat moderately
dense gases.

E.3 Extension of Boltzmann equation

There is a long history to extend the Boltzmann equation for dense fluids [211–
221]. In 1922 [211], Enskog proposed one of the generalization of the Boltzmann
equation for hard sphere fluid, which is now called “Standard Enskog Theory
(SET).” f (2) is replaced as

f (2) → g(|r12| = σ)f(r1,v1, t)f(r1 − kσ,v2, t), (E.27)

i.e. the product of the distribution function for the two colliding spheres and
g(σ), which denotes static two-body correlations or the radial distribution func-
tion for a hard sphere fluids. For the SET, the static correlation g is the function
of the number density as in fluid in uniform equilibrium evaluated at the con-
tact point (r1 + r2)/2. SET has been criticized for the absence of the Onsager
reciprocity relations in the case of a binary mixture of hard-sphere fluids [218].

After the formulation of the BBGKY hierarchy, in 1958, Choh and Uhlen-
beck [212] extended the Boltzmann equations to include triple collision term
K(f, f, f)

∂f1
∂t

+ v1 · ∇f1 = Iel(f, f) +K(f, f, f) + · · · , (E.28)

and performed the density expansion, where the density dependence of the trans-
port coefficients are calculated with the density of the system as an expansion
parameter. Here, the correction in Eq. (E.27) is included in Iel(f, f). Choh and
Uhlenbeck calculated the first order correction of the transport coefficient in
three dimensions and Green and Cohen derived the formal structure of l-tuple
collision terms (l = 2, 3, 4, · · · ). McLennan showed that the first correction
term corresponds to the results from the Green-Kubo formula [213]. However,
Dorfman and Cohen, Weinstock, as well as Goldman and Frieman show that the
density expansion contains the logarithmic divergent in the second-order correc-
tion term in 3D and the first-order correction in 2D. Therefore, the convergence
of the density expansion is questionable. Kawasaki and Oppenheim were the
first to re-sum the divergent term, i.e. ring diagrams [214]. The details of the
work by Choh Uhlenbeck are summarized by Ernst [221].
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Revised Enskog Theory

The recent accepted phenomenological theory for the kinetic theory is called
“Revised Enskog Theory (RET), ” which is constructed in 1972 by van Beijeren
and Ernst. [215–217,219]. The RET equation is written as

(
∂

∂t
+ v1 · ∇1)f(r1,v1, t) = Jel

E [r1,v1|f(t)], (E.29)

with the new collision operator

Jel
E [r1,v1|f(t)] ≡

∫
d3v2d

2kS(k · v12){f (2)(r1,v
′′
1 ; r1 + σk,v′′

2 ; t)

−f (2)(r1,v1; r1 − σk,v2; t)}, (E.30)

where the closure for the two body distribution f (2)

f (2)(r1,v1; r2v2; t) = χ(r1, r2|n(t))f(r1,v1, t)f(r2,v2, t), (E.31)

is adopted. The difference of RET from SET is χ, which is the functional of n
as in a fluid in non-uniform under the local equilibrium [191]. RET dose not
contradict to the Onsager reciprocal relation [217]. Haro and Garzó showed that
the difference between SET and RET emerges in the case of a binary mixture
of hard-sphere fluid at Navier-Stokes order [218] or a monatomic fluid at the
Burnett order [220].

E.4 Kinetic Theory for Granular Flow

Boltzmann equation for granular flow

Let us derive the Boltzmann equation for granular gases intuitively, following
Ref. [61]. The Boltzmann equation for granular gases consists of the collision
integral I(f, f), which denotes the increase or decrease of f1d3r1 after the col-
lision per unit time. The number of direct collisions ν− and that of inverse
collisions ν+ that occur during ∆t and whose geometry is specified by d2k are
described as

ν− = f1f2d
3v1d

3v2S(k · v12)d2k∆td3r1 (E.32)
ν+ = f ′′1 f

′′
2 d

3v′′1d
3v′′2S(k · v′′

12)d
2k∆td3r1

= Λf ′′1 f
′′
2 d

3v1d
3v2S(k · v12)d2k∆td3r1 (E.33)

with

Λ ≡ 1
eg

∂(v′′
1 ,v

′′
2 )

∂(v1,v2)
. (E.34)

Here, the Jacobian yields
∂(v′′

1 ,v
′′
2 )

∂(v1,v2)
=

1
eg
, (E.35)
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for inelastic hard core gases with a constant restitution coefficient eg < 1. Thus,
the Boltzmann equation for granular gases follows from the conservation of
probability:

∂f1
∂t

+ v1 · ∇1f1 =
∫
d3v2d

2kS(k · v12)
(

1
e2g
f ′′1 f

′′
2 − f1f2

)
. (E.36)

The difference from elastic gases is that the existence of the homogeneous cooling
state (HCS) due to the inelastic collisions. Because the kinetic energy dissipates
through inelastic collisions, Tg, which is called the granular temperature, goes
to zero as time passes. Although the exact solution is not known, the homo-
geneous solution for Eq. (E.36) is conventionally analyzed by using the Sonine
polynomial expansion:

f(v, t) = fM

[
1 +

∞∑
p=1

apSp(c2)

]
, (E.37)

with c ≡ v1/
√

2Tg(t)/m and the Sonine polynomials Sp(x)(p = 0, 1, 2, · · · ),
which satisfy the orthogonality conditions:∫

dc
e−c2

π−3/2
Sp(c2)Sp′(c2) = 2δpp′

(
p+

1
2

)
!. (E.38)

The first few Sonine polynomials in 3D read

S0(x) = 1, S1(x) = −x+
3
2
, S2(x) =

x2

2
− 5x

2
+

15
8
. (E.39)

The corresponding coefficients for f are known to be a1 = 0 and

a2 =
16(1− eg)(1− 2e2g)

81− 17eg + 30e2g(1− eg)
, (E.40)

which are derived by van Noije and Ernst [72] on the basis of an earlier calcu-
lation by Goldstein and Shapiro [227]. The validity of the Sonine polynomial
approximation is verified via the DSMC simulation [223]. We note that one-
dimensional granular gas violates equipartition of energy [224].

RET for granular flow

We adopt RET to treat moderate dense granular flow [193]:(
∂

∂t
+ v1 · ∇1

)
f(r1,v1, t) = JE [r1,v1|f(t)], (E.41)

where the collision operator is introduced as

JE [r1,v1|f(t)] ≡
∫
d3v2d

2kS(k · v12){Λf (2)(r1,v
′′
1 ; r1 + σk,v′′

2 ; t)

−f (2)(r1,v1; r1 − σk,v2; t)}. (E.42)
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Here, two-body distribution function is approximated as

f (2)(r1,v1; r2,v2; t) = χ(r1, r2|n(t))f(r1,v1, t)f(r2,v2, t), (E.43)

with the equilibrium pair-correlation function χ as a functional of density n and
the Jacobian for constant restitution coefficient case Λ = 1/e2g,

From the RET equation (E.41), the continuity equation for a physical quan-
tity ψ = ψ(v1) can be calculated through the integration

∫
d3v1 after multiply-

ing ψ on Eq. (E.41):

∂

∂t
〈ψ〉f = − ∂

∂xα
Jα(ψ) + I(ψ), (E.44)

where 〈· · · 〉f ≡
∫
d3v1f(x1,v1, t) · · · and Jα = Jc

α + Jk
α with

Jk
α ≡ 〈v1αψ〉f (E.45)

Jc
α ≡ σ

4

∫
d3v1d

3v2d
2k

∫ 1

0

dλS(v12 · k)kα (E.46)

∆′ψf (2)(r1 + σk(1− λ),v1; r1 − λσk,v2; t),

I(ψ) ≡ 1
2

∫
d3v1d

3v2d
2kS(v12 · k)∆ψf (2)(r1 + σk,v1; r1v2; t), (E.47)

with ∆′ψ ≡ (ψ′
1 − ψ1) − (ψ′

2 − ψ2) and ∆ψ ≡ (ψ′
1 − ψ1) + (ψ′

2 − ψ2). Hydro-
dynamical equations are derived by integrating over

∫
d3v1 after multiplying

1, v1α, and v2
1/2:

(∂t + Uβ∂β)n = −n∂βUβ , (E.48)

(∂t + Uβ∂β)Uα = − 1
mn

∂βσαβ , (E.49)

(∂t + Uβ∂β)Tg = − 2
3n
{∂βqβ + (∂βUα)σαβ} − ζTg, (E.50)

with the density n ≡ 〈1〉f , the velocity field Uα ≡ 〈uα〉f/n, the granular tem-
perature Tg ≡ 〈mu2〉f/3n and uα ≡ v1α − Uα. Here, the stress tensor σαβ , the
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heat flux qα, and the cooling rate ζ are introduced:

σαβ = σk
αβ + σc

αβ , (E.51)

σk
αβ ≡ m〈u1αũ1β〉f , (E.52)

σc
αβ ≡ σ3m(1 + eg)

4

∫
dv3

1dv
3
2

∫
d2kΘ(g12)g2

12

kαkβf
(2)(r1 + σk(1− λ),v1; r1 − λσk,v2; t), (E.53)

qα = qk
α + qc

α, (E.54)
qk
α ≡ m〈u1αu2

1〉f/2, (E.55)

qc
α ≡ σ3m

4

∫
d3v1d

3v2d
2kΘ(g12)2(1 + eg)g2

12

Ṽ12βkβkαf
(2)(r1 + σk(1− λ),v1; r1 − λσk,v2; t), (E.56)

ζ ≡ −I(mv2)
3nTg

, (E.57)

with g12 ≡ v12 · k, Ṽ12α ≡ V12α − Uα, and V12 ≡ (v1 + v2)/2. The detailed
derivations for Eqs. (E.44) and (E.48)-(E.50) are shown in Ref. [195].

Treatment of the rotational degrees of freedom

To solve hydrodynamical equations for frictional grains is laborious work. In-
cluding the collision rule of frictional grains, hydrodynamical equations can be
derived from the Enskog equations. However, in addition to equations for the
translational degree of freedoms (n,U , Tg), those for the angular velocity fields
ω̄ ≡

∑
i ωi and the rotational temperature Trot ≡

∑
i I0(ωi − ω̄)2/2 with mo-

ment of inertia of grains I0 are necessary, which are quite complicated [225–233].
This difficulty can be avoided in the case of the slightly frictional grains, i.e.
small frictional coefficient cases, where the effect of the tangential contact in
collisions can be absorbed in the renormalized restitution coefficient [177, 178].
For slightly frictional spheres, Jenkins and Zhang [177] suggested that hydro-
dynamical equations for frictional grains are reduced to those for translational
degree of freedoms by introducing an effective restitution coefficient ēg

ēg = eg −
π

2
µp +

9
2
µ2

p +O(µ3
p), (E.58)

as an expansion about the friction coefficient between grains µp, if µp is small.
The validity of three-dimensional theory [177] has been tested by Xu et al [234]
and Jenkins and Zhang [177]. The latter is consistent with Lun and Bent [235]
in part. The validity of the case for slightly frictional disks [178] has been veri-
fied by Saitoh and Hayakawa [179]. Although the correlation between velocity
and angular velocity of grains has been argued at the level of VDFs [230, 233],
the transport coefficients for the large µp case have not been derived to our
knowledge.
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E.5 Transport coefficients for inelastic hard core
gases

In this section, we summarize the results known as transport coefficients for
inelastic hard core gases. We have used κ in the elastic limit eg = 1 in Chap.
7. Let the one body VDF for hard core gas f , viscosity η, thermal conductivity
κ, thermal conductivity from inelasticity µ. The superscript ∗ in this appendix
represents the dimensionless quantities, normalized by the corresponding di-
mensional ones, such as

η0 ≡ 5
16σ2

√
m

πTg
(E.59)

κ0 ≡ 15η0
4m

(E.60)

pk ≡ nTg (E.61)

ν0 ≡ pk

η0
. (E.62)

The dimensionless quantities are defined as

η∗ ≡ η

η0
, κ∗ ≡ κ

κ0
, γ∗ ≡ γ

η0
, µ∗ ≡ nµ

κ0Tg
,

p∗ ≡ p

pk
, ζ∗ ≡ ζ

ν0
, ν∗η =

νη

ν0
, ν∗κ = νµ =

νµ

ν0
. (E.63)

Transport coefficients are summarized in Table. E.1, where n∗ represents the
dimensionless density n∗ ≡ nσ3. We introduce

S̃l(u) ≡ ul

(
mu2

2
− 5Tg

2

)
(l = x, y, z), (E.64)

Ẽ(u) ≡
(
mu2

2Tg

)2

− 5mu2

2Tg
+

15
4
. (E.65)
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Table E.1: Transport coefficients for moderately dense inelastic hard core gases
in [73].

f = fM

{
1 + c∗

4 Ẽ(u)− 2m
5nT 3

∑
l=x,y,z

(
κk∂lT + µk∂ln

)
S̃l(u)

−T 2ηk

2n

∑
ij=x,y,z

(
∂iUj + ∂jUi − 2

3δij
∑

l=x,y,z ∂lUl

)
+ cDENE(u)

∑
l=x,y,z ∂lUl

}
fM = n

π3/2

(
2T
m

)3/2
e−mu2/2T

η∗ = ηk∗ [1 + 2
15πn

∗χ(1 + eg)
]
+ 3

5γ
∗

ηk∗ =
(
ν∗η − 1

2ζ
(0)∗)−1 [

1− 1
15 (1 + eg)(1− 3eg)πn∗χ

]
γ∗ = 32

45πn
∗2χ(1 + eg)

(
1− c∗

32

)
κ∗ = κk∗ [1 + π

5n
∗χ(1 + eg)

]
+ 64

225n
∗2χ(1 + eg)

(
1 + 27

32c
∗)

κk∗ = 2
3 (ν∗κ − 2ζ(0)∗)−1

(
1 + 1+p∗

2 c∗ + π
10n

∗χ(1 + eg)2
{

2eg − 1 + 3(1+eg)2−10
6(1+eg) c∗

})
µ∗ = µk∗ [1 + π

5n
∗χ(1 + eg)

]
µk∗ = 2

(
2ν∗κ − 3ζ(0)∗)−1

{
(1 + n∂nlnχ)ζ(0)∗κk∗ + p∗

3 (1 + n∂nlnp∗)c∗

− 2π
15n

∗χ(1 + n
2 ∂nlnχ)(1 + eg)

(
eg − e2g + c∗

3 + eg(1−eg)
4 c∗

)}
cD = 1

ν0

[
ζ(0)∗

2 + ν∗γ + 5c∗

64

(
1 + 3c∗

64

)
χ(1− e2g)

]−1 [
2λ∗

45 πnχ+ (p∗ − 1)( 2
3 − eg)c∗

]
p∗ = 1 + 1+eg

3 πn∗χ

ζ∗ = ζ(0)∗ + ζ(1)∗, ζ(0)∗ = 5
12χ(1− e2g)

(
1 + 3c∗

32

)
,

ζ(1)∗ = [−1−eg

ν0
(p∗ − 1) + 5

32 (1− e2g)
(
1 + 3c∗

64

)
χcD]

∑
l=x,y,z ∂lUl,

c∗ = 32(1− eg)(1− 2e2g)
[
81− 17eg + 30e2g(1− eg)

]−1
,

λ∗ = 3
8 (1 + eg)

[
(1− eg)(5e2g + 4eg − 1) + c∗

12 (159eg + 3e2g − 19eg − 15e3g)
]
,

ν∗η = χ
{
1− 1

4 (1− eg)2
}(

1− c∗

64

)
ν∗κ = ν∗µ = 1+eg

3 χ
[
1 + 33

16 (1− eg) + 19−3eg

1024 c∗
]

ν∗γ = 1+eg

48 χ
[
128− 96eg + 15e2g − 15e3g + c∗

64 (15e3g − 15e2g + 498eg − 434)
]
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Appendix F

Velocity auto-correlation

We demonstrate the utility of the SMF for the velocity auto-correlation func-
tion for a fluctuating piston in this appendix. In Ref. [239], the overdamped
Langevin description is not adequate for the autocorrelation function for the
piston velocity. Here, we compare the velocity autocorrelation function C(t) ≡
〈V̂ (t)V̂ (0)〉/〈V̂ 2(0)〉 obtained by MD for a dilute gas, by choosing Tbath = Tout.
As can be seen in Fig. F.1 (a), due to the implementation of the fluctuation of
T̂in, the SMF model (solid line) agrees with the behavior of C(t) for MD sim-
ulation with ε = 0.01, which is better than that obtained by an underdamped
Langevin equation at a constant temperature.

Taking the average of the SMF (7.5) and (7.22), the solid line in Fig. F.1(a)
is derived. By solving Eq. (7.25), we obtain an analytic expression for C(t) for
the SMF CSMF(t) as:

CSMF(t) = e−εγ̄t/2
{

cos(ωt)− εγ̄

2ω
sin(ωt)

}
, (F.1)

ω ≡
√
PoutA

M

√
1− ε2MNTout

4P 2
outA

2
. (F.2)

Equation (F.1) reproduces the result of the under-damped Langevin CL(t) [239]
replacing γ̄ → γgas. The only difference between the Langevin equation and
the SMF is the back action of the temperature Eq. (7.23) due to the motion of
the piston. It should be noted that the difference between CL(t) and CSMF(t)
becomes smaller as N →∞ as is shown in Fig. F.1 (b).
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Figure F.1: (a) The comparison of results for the SMF model (solid line) and
MD (squares) in terms of C(t). The SMF model correctly predicts the MD data
and shows better agreement with MD than the prediction of the underdamped
Langevin equation (dotted line), due to the implementation of the time evolution
of T̂in. (b) The difference of the autocorrelation functions between MD and SMF
is shown for 0 < t/t0 < 1 in the main figure. As N →∞, the difference becomes
smaller. The inset represents the results for 0 < t/t0 < 0.1.
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Appendix G

On the definition of work
for a passive engine

In Chapter 7, we have defined the work as “Pressure × Volume change,” which
is not trivial. In this appendix, we justify the definition, i.e. we decompose
the change of the kinetic energy of piston into heat and work by consider-
ing the path probability of (X̂(t), V̂ (t)) under T̂in(t) = Tin. The discussion
here is the extension of Ref. [242] toward the case that the volume of the en-
closed gas fluctuates in time. Let us consider the path probability for the for-
ward evolution P([X̂, V̂ |τ) of (X̂, V̂ ) during the interval τ from (X̂(0), V̂ (0))
to (X̂(τ), V̂ (τ)) and the backward one P([X̂, V̂ ]†|τ) from (X̂(τ),−V̂ (τ)) to
(X̂(0),−V̂ (0)), where n collisions between the piston and particles take place at
time {ti}ni=1 with 0 = t0 < t1 < · · · < tn = τ . The jump rates for the piston ve-
locity from Vi−1 ≡ V̂ (ti−1) to Vi ≡ V̂ (ti) at the piston position Xi−1 ≡ X̂(ti−1)
caused by collisions from particles inside and outside the container are, respec-
tively, written as

Win(Vi ← Vi−1|Xi−1) ≡ nin(Xi−1)A
∫ ∞

−∞
dv|v − Vi−1|

×Θ(v − Vi−1)φ(v, Tin)δ
(
Vi − Vi−1 −

Pv(Vi−1)
M

)
,

(G.1)

Wout(Vi ← Vi−1) ≡ noutA

∫ ∞

−∞
dv|v − Vi−1|

×Θ(Vi−1 − v)φ(v, Tout)δ
(
Vi − Vi−1 −

Pv(Vi−1)
M

)
,

(G.2)
Wtot(Vi ← Vi−1|Xi−1) ≡ Win(Vi ← Vi−1|Xi−1) +Wout(Vi ← Vi−1). (G.3)
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The escape rate per a unit time κ(Vi−1|Xi−1) for (Xi−1, Vi−1) is represented as

κ(Vi−1|Xi−1) =
∫ ∞

−∞
dV ′Wtot(V ′ ← Vi−1|Xi−1)

= nin(Xi−1)A
∫ ∞

Vi−1

|v − Vi−1|φ0(v, Tin)dv

+noutA

∫ Vi−1

−∞
|v − Vi−1|φ0(v, Tout)dv. (G.4)

Thus, P([X,V ]|τ) and P([X,V ]†|τ) are represented as

P([X,V ]|τ) = exp

[
−

n−1∑
i=0

∫ ti+1

ti

κ(Vi|X(si))dsi

][
n∏

i=1

Wtot(Vi ← Vi−1|Xi−1)

]
,

(G.5)

P([X,V ]†|τ) = exp

[
−

n−1∑
i=0

∫ ti+1

ti

κ(−Vi|X(si))dsi

][
n∏

i=1

Wtot(−Vi−1 ← −Vi|Xi−1)

]
.

(G.6)

Here, the position of the piston at time ti < si < ti+1 is given by X(si) ≡
Xi + Vi(si − ti). We obtain∫ ti+1

ti

{κ(Vi|Xsi)− κ(−Vi|Xsi)} dsi = −N ln
(
Xi+1

Xi

)
+ noutAVi(ti+1 − ti)

= −βin

∫ Xi+1

Xi

nin(X)TinAdX

+βoutPoutAVj(ti+1 − ti), (G.7)

ln
{

Wtot(V ′ ← V |X)
Wtot(−V ← −V ′|X)

}
=

 βin
m(v′2 − v2)

2
≡ βin∆Ein(V ′ > V )

βout
m(v′2−v2)

2 ≡ βout∆Eout(V ′ < V ),
(G.8)

Here we have introduced the inverse temperature βν ≡ 1/Tν and the energy
change of ν side gas ∆Eν through the piston fluctuation (ν = in, out). Using
Eqs. (G.7) and (G.8), we obtain the following expression on the definition of
the work:

ln
{
P([X,V ]|τ)
P([X,V ]†|τ)

}
= βin∆Qin + βout∆Qout + ∆Sinel, (G.9)

∆Ein = ∆Qin −
∫ Xτ

Xini

1 + e

2
ninTinAdX, (G.10)

∆Eout = ∆Qout +
1 + e

2
PoutA

∫ Xτ

Xini

dX, (G.11)

∆Sinel ≡
1− e

2

∫ Xτ

Xini

{ninTin − Pout}AdX (G.12)
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where we have introduced the abbreviation V0 ≡ V̂ (0), Xτ ≡ X̂(τ) and Vτ ≡
V̂ (τ). From Eq. (G.10), the change of the internal energy for the enclosed gas
∆Ein is apparently decomposed into the change of work and heat. Thus, we
adopt the definition of work Eq. (7.26).
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Appendix H

Effect of side-wall friction
on a passive engine

In this appendix, we discuss the effect of the side-wall friction on the efficiency
for a passive engine, which exists for realistic situations. We implement the
linear friction on the side-wall as F̂fri = −γlinV̂ . Then, the equation of motion
Eq. (7.5) turns out to be

M
dV̂

dt
= F̂in + F̂out + F̂fri (H.1)

We assume that γlin does not depend on ε and γlin/γgas = O(1), where the
motion of the piston becomes the over-damped type, even if the piston is heavy.
Because the side-wall friction can be regarded as that attached with a zero
temperature bath, we define the efficiency under friction [240] by introducing
the frictional heat:

Q̂fri ≡
∮
γlinV̂

2dt (H.2)

η̂fri ≡
Ŵtot

Q̂H + Q̂fri

(H.3)

The simulated data for the efficiency at MP with γlin/γgas = 2.0 and e = 1.0
are plotted in Fig. H.1. The asymptotic behavior of 〈η̂〉SC and 〈η̂fri〉SC in the
limit ε → 0 for TH/TL = 5.0 are shown in Fig. H.1 (a). In Fig. H.1 (b), we
plot the temperature dependence of 〈η̂〉SC and 〈η̂fri〉SC at MP with ε = 0.001,
where the efficiencies are lower than ηCA(see Fig. 7.7 (a)). Thus, as expected,
the friction on the sidewall lowers the efficiency.
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Figure H.1: The efficiency at MP under side-wall friction. The asymptotic
behavior of the efficiencies in the limit ε→ 0 (a), and their temperature depen-
dence for ε = 0.001 and γlin/γgas = 2.0 (b). The friction on the sidewall lowers
the efficiency.
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